

Independent Research & further reading

Guests: Dr Vonda Wright, Dr Natalie Crawford, Dr Stacy Simms, Dr Mary Clare

Haver

Disclaimer 1: The sources presented here, directly (or as closely as possible), look at statements made by the guest in this episode. In order to report each topic thoroughly, an extensive search and review (beyond the scope of this document) would be required.

Disclaimer 2: The information provided in this podcast and any associated materials is not intended to replace professional medical advice. For any medical concerns, it is essential to consult a qualified health professional.

Contents

Gender Disparities in Health Research Funding	2
Diagnostic Delays in Endometriosis	4
Inclusion of Women in Clinical Trials	4
Sex Differences in Muscle, Heart, and Circulatory Health	5
Hormones as the Body's Communication System	7
Hormonal Regulation of the Menstrual Cycle	8
Gestational Diabetes and Long-Term Health Risks	11
Infertility as a Marker of Broader Health Risks	13
Polycystic Ovary Syndrome (PCOS): Insulin Resistance and Systemic Effects	15
Fasting, Cortisol, and Circadian Disruption in Women	19
Low Estrogen and Amenorrhea: Health Consequences	21
Heavy Menstrual Bleeding and Iron Deficiency Anemia	21
Post-Contraceptive Cycle Recovery and Endometrial Damage	22
Menstrual Blood Loss and Iron Deficiency in Women	23

Endometriosis: Inflammation, Diagnosis, and Impact on Fertility	24
Cold Water Exposure and Physiological Stress Responses	27
Chronic Inflammatory Diseases and Sex Differences	28
Hormonal Contraceptives and Suppression of Ovulation	29
Celiac Disease and Recurrent Pregnancy Loss	31
Mechanism of Intrauterine Device (IUD) Contraception	32
Differences Between Ethinylestradiol and Estradiol	33
Effectiveness and Limitations of Natural Family Planning	33
Estetrol (E4) as a Novel Estrogen Therapy	34
Hormonal Fluctuations and Premenstrual Dysphoric Disorder (PMDD)	35
The Menopausal Transition: Physiological and Psychological Changes	37
Autonomic and Cardiovascular Adaptations After Ovulation	44
Sleep Disruption as a Modifiable Risk Factor for Dementia	45
The Impact of Chronic Stress on Fertility and Pregnancy Outcomes	45
Ovarian Reserve Decline and Factors Affecting Egg Count	46
Age-Related Decline in Natural Fertility	48
Effects of Male Marijuana Use on Sperm Quality and Pregnancy Outcomes	49
Therapeutic Applications of Hormone and Vaginal Estrogen Therapy in Menopause	50
References	55

Gender Disparities in Health Research Funding

"data show that of the \$450 billion spent on research in this country alone, less than 1% is spent on women over 40. And yet we are nearly 90 million people and we make 80% of all the healthcare decisions in this country for ourselves and everyone we touch. And so even though when you look at the long-term data, women are winning the longevity race here, we're living an average of six years longer than men (...)

However, we have twice as high of mental health disorders, we're two times as more likely to end up in a nursing home. We are much more likely to lose our long-term independence from frailty or dementia, much more than our age-matched male counterparts."

Research Funding

Analyses of U.S. biomedical research funding reveal that women's health remains significantly underfunded relative to both population share and disease burden. Less than 9% of the total NIH budget is allocated to women's health research, with the National Academies reporting an average of 8.8% across the past decade. This shortfall is compounded by evidence that nearly three-quarters of diseases disproportionately affecting women receive less funding than would be expected based on their disability-adjusted life years. For women over 40, funding gaps are particularly stark: while no precise figure exists for this demographic, studies note a lack of age-specific research investment, especially in menopause and related chronic conditions. Indeed, less than 1% of federal funding has been directed to peri- and menopause research, underscoring a critical gap in support for health issues that affect millions of midlife and older women.

Longevity Statistics

Current data confirm that women live significantly longer than men both in the United States and worldwide. As of 2021, U.S. life expectancy averaged 79 years for women and 73 years for men, a gap of about six years that has widened in recent years due in part to the COVID-19 pandemic and higher mortality from unintentional injuries among men. Globally, women outlive men by approximately four to five years on average, with the exact margin varying across regions but consistently showing a female advantage. This pattern is well established in international studies and is understood to arise from a combination of biological, behavioral, and social factors.

Prevalence of Mental Health Disorders

Studies consistently show that women experience higher rates of most mental health disorders than men, particularly depression and anxiety. The global prevalence of major depression is about 1.7 times higher in women than in men, and large European studies report a similar gap, with 7.7% of women versus 4.9% of men meeting criteria for current depressive disorder. Anxiety disorders follow the same pattern, with male-to-female prevalence ratios of roughly 1:1.7–1.8 across lifetime and 12-month measures. Community surveys also find that about one in five women, compared to one in eight men, report a common mental disorder. By contrast, substance use and antisocial disorders are more common in men. Overall, women's elevated risk for depression and anxiety results in prevalence ratios typically between 1.5 and 2, though the gender gap narrows in older age.

Nursing Home Admission

Although women make up the majority of nursing home residents, typically between 60% and 75%, this does not reflect a twofold higher individual risk of admission compared to men. Large U.S. and European studies show that men and women have broadly similar risks of entering nursing homes, with some analyses even finding a slightly lower risk for women after accounting for deaths during follow-up. The overrepresentation of women in nursing homes is therefore explained primarily by demographic factors: women live longer on average, are more likely to be widowed, and thus have less access to informal care at home.

Frailty and Dementia

Women face higher rates of both frailty and dementia compared to age-matched men, with disparities becoming especially pronounced in advanced age. Globally, the prevalence of dementia among adults over 50 is estimated at 7.9% in women versus 5.6% in men, and the lifetime risk at age 45 is about one in five for women compared to one in ten for men. While this difference is partly explained by longer female life expectancy, biological and social factors also contribute. Frailty shows a similar pattern, affecting about 15% of women versus 11% of men in community-dwelling older populations, with women also spending more years living with frailty. Cognitive frailty, defined as the co-occurrence of frailty and cognitive impairment, is likewise more frequent in women. These findings indicate a consistent gender gap in both physical and cognitive vulnerabilities later in life.

References 1-15.

Diagnostic Delays in Endometriosis

"It takes women seven to 10 years to get a diagnosis of endometriosis after symptoms start."

Women with endometriosis typically face long diagnostic delays, with studies reporting an average wait of 4 to 11 years from the onset of symptoms to confirmation of the condition. In the U.S., recent data suggest a shorter mean delay of about 4.4 years, but in the UK, Europe, and New Zealand, average delays of 7 to 9 years are common, and some cases exceed a decade. Adolescents and young women are particularly affected, as symptoms beginning before age 20 are linked to the longest diagnostic lags. Contributing factors include the normalization of symptoms, frequent misdiagnosis, limited awareness, and the reliance on surgical confirmation for diagnosis.

References 16-21.

Inclusion of Women in Clinical Trials

"the shocking statistic is that not until 1993 were women required to be represented in studies

1993 (...) We're still not at 50%."

The first federal policy requiring the inclusion of women in U.S. federally funded clinical research was the NIH Revitalization Act of 1993. Signed into law on June 10 of that year, the Act mandated that women and minorities be included in all NIH-supported clinical studies and that trials be structured to allow valid sex- and race-based analyses of outcomes. Importantly, cost was not considered an acceptable reason for exclusion. Prior to this legislation, women—particularly those of childbearing potential—were often excluded from trials, and no requirement existed for sex-specific data analysis. Implementation guidelines followed in 1994, and while the FDA also issued updated guidance that same year, it encouraged but did not mandate women's inclusion.

Women currently make up about 40–46% of participants in U.S. clinical research, though representation varies widely across disease areas and trial types. Large analyses of recent drug and device trials report an overall female participation rate of around 41%, while trials for FDA-approved drugs in 2013–2015 showed a similar figure of 40%. Representation is somewhat higher in oncology trials, averaging 47%, but notably lower in cardiovascular and psychiatric research, where women

comprise 38% and 42% of participants respectively, despite bearing a larger share of disease burden in these areas. Such discrepancies indicate that while women are included in substantial numbers since the NIH Revitalization Act of 1993, they remain underrepresented relative to their prevalence in many conditions.

References 22-29.

Sex Differences in Muscle, Heart, and Circulatory Health

"men have more of our fast twitch fibers. Women are born with more endurance fibers (...)

We see smaller lungs, smaller heart, less hemoglobin in women than men (...)

Men tend to have their blockages. So atherosclerotic disease is basically the plaques that build up in the coronary arteries around the heart. Men tend to develop their plaques very early (...)

[women] present with a heart attack much differently than a man does (...) Women are considered to have atypical chest pain."

Muscle Fiber Composition by Sex

Research shows that men generally have a higher proportion and larger cross-sectional area of fast-twitch (type II) muscle fibers compared to women, though the differences are moderate and vary by muscle group. Meta-analyses covering over 5,000 participants indicate that men have a greater distribution of type II fibers, including subtypes IIA and IIX, while women tend to have more slow-twitch (type I) fibers. For example, in the semitendinosus muscle, men show about 66% fast-twitch fibers compared to 55% in women. In contrast, the vastus lateralis (the largest of the four quadriceps muscles, located on the outer, or lateral, side of the thigh) displays broadly similar distributions between sexes, though men still possess larger fiber sizes. Genetic factors such as ACTN3 polymorphisms and hormonal influences also contribute to these differences. Overall, this pattern aligns with greater male muscle strength and power capacity, while women's higher proportion of type I fibers supports enhanced fatigue resistance.

Cardiopulmonary Size Differences

Women generally have smaller lungs and smaller hearts than men, even when matched for body size. Anatomical studies show that women have reduced lung volumes, fewer alveoli, and narrower airways, alongside a distinct prismatic lung shape compared to the pyramidal configuration more common in men. These differences contribute to greater ventilatory constraints and a higher work of breathing during exercise. Similarly, women's hearts have intrinsically smaller chamber volumes and overall cardiac size, with sex itself accounting for a significant share of the variability in cardiac morphology. Such distinctions in pulmonary and cardiac anatomy influence both functional performance and clinical risk profiles.

Hemoglobin Levels

Women consistently have lower average hemoglobin concentrations than men across adulthood, with mean values about 12% lower. Typical reference ranges place men at 14.5–15 g/dL compared to around 13 g/dL in women, a difference that persists from early adulthood until late life, when both sexes experience decline. This disparity reflects underlying physiological factors: sex hormones influence red blood cell production, and menstrual blood loss further reduces hemoglobin levels in women. These consistent differences are recognized in global clinical standards, with the World Health Organization defining anemia at a threshold of 120 g/L for women and 130 g/L for men.

Atherosclerosis Age of Onset

Men typically develop atherosclerotic plaques and related complications 10 to 15 years earlier than women. Imaging and autopsy studies show that measurable coronary atherosclerosis often appears in men from their 40s, while women are generally affected after menopause, around age 60 and beyond. This delay is attributed largely to the protective effects of estrogen before menopause. At younger ages, men have a greater number, size, and burden of plaques, with a tendency toward softer, rupture-prone lesions, whereas women's plaques are more stable and fibrous. After menopause, however, plaque burden and vulnerability increase in women, and the sex difference narrows, sometimes leaving older women with equal or greater relative risk. These findings underscore the importance of sex-specific risk assessment and prevention strategies across the lifespan.

Heart Attack Symptom Differences

Women are more likely than men to present with a broader range of symptoms during a heart attack, though chest pain remains the most common symptom for both sexes. Compared to men, women report chest pain slightly less often and are more likely to experience shortness of breath, nausea or vomiting, fatigue, palpitations, and pain in the back, neck, jaw, or between the shoulder blades. They may also notice prodromal symptoms such as unusual fatigue or sleep disturbance in the days preceding the event. These differences contribute to delays in diagnosis and treatment, as symptoms may not be immediately recognized as cardiac in origin, and women themselves are less likely to attribute them to heart disease. For this reason, the use of "typical" versus "atypical" has become less favored, with emphasis shifting toward sex-specific patterns and the recognition of significant overlap in presentation.

References 30-44.

Hormones as the Body's Communication System

"What is a hormone? (...) Hormone, your body's communication system. Right. So it is really how your body is sending out messengers to communicate. So a hormone is dictating an action."

Hormones are scientifically defined as chemical messengers produced by specialized cells or glands that regulate physiological functions by transmitting signals between tissues and organs. Released in small amounts into the bloodstream or extracellular fluid, they bind to receptors on target cells and trigger intracellular signaling cascades that influence gene expression, metabolism, or cellular activity. The specificity of hormonal effects depends on receptor distribution and sensitivity, allowing the same hormone to act differently in different tissues. Hormones function through several signaling modes—endocrine, paracrine, autocrine, and neuroendocrine—and collectively regulate processes such as growth, reproduction, metabolism, stress adaptation, and immune function. Acting in concert with the nervous system, they provide sustained regulation that complements rapid neural responses, ensuring coordinated communication and homeostasis across the body.

References 45-51.

Hormonal Regulation of the Menstrual Cycle

"you should have a regular predictable period, which means that you are having a menstrual bleed at a predictable interval. It can range person to person, but really it should be within a couple days, month to month (...) usually that range is somewhere between 25 and 35 days, for the average person. When it starts to get shorter or longer, it can be a warning sign that something is going on (...)

If you had a 28 day cycle, which only about 13% of women actually do \dots

So when LH is coming from the brain, you have a corpus luteum, it makes progesterone. This is the second half the cycle known as the luteal phase. The first half when you have estrogen only is the follicular phase. So you have an estrogen dominant phase, and then you have a phase where you have both estrogen and progesterone and your body is made (...)

FSH drives egg growth. It's called follicle stimulating hormone. And each egg is inside a follicle.

So you have a group of follicles inside the ovary. FSH comes from the brain grabs one of them and gets it to grow, and it makes estrogen and this estrogen from the ovary as the egg is growing. It's called estradiol, and it's the primary type of estrogen in your body. So it is rising.

And when it gets to a peak level, and the body is so fascinating because it's 200 picograms for 50 hours, it's a very exact amount. Then the brain says we must have a mature egg. And it kicks out a surge of luteinizing hormone, LH. And that is going to allow the follicle to rupture the egg to be released and the follicle to reform and then become a corpus luteum. And then the brain's gonna send out pulses of LH, giving you pulses of progesterone.

Progesterone is the progestational hormone (...) It is going to change the endometrial lining and it's essential to get pregnant. It opens and closes the implantation window within the uterus and it completely changes the physiology of your body (...)"

Normal Menstrual Cycle Range

A normal menstrual cycle in healthy individuals typically lasts about 28 days, though natural variation means most cycles fall within a range of 25 to 35 days. Large-scale studies confirm this pattern, with some extending the normal range slightly wider, to 24–38 days. Variability is influenced mainly by the follicular phase before ovulation, while the luteal phase after ovulation is usually more

stable at 12–14 days. Bleeding typically lasts three to seven days. Variability is greater during adolescence and perimenopause, when cycles are more likely to be irregular.

Large-scale studies show that only about 16% of women have a median menstrual cycle length of exactly 28 days, making this cycle length much less common than often assumed.

Menstrual cycles that are consistently shorter than 21 days or longer than 35–40 days may indicate underlying health problems, particularly when irregularity persists across multiple cycles. Both short and long cycles have been linked to increased risks of cardiovascular disease, metabolic syndrome, type 2 diabetes, nonalcoholic fatty liver disease, and adverse pregnancy outcomes. Endocrine conditions such as polycystic ovary syndrome or thyroid dysfunction commonly present with prolonged or irregular cycles, while irregularity is also associated with psychological distress and reduced quality of life. Persistent deviations outside the 25–35 day range should therefore prompt medical evaluation.

Phases of the Menstrual Cycle

The menstrual cycle is conventionally divided into two main phases: the follicular phase and the luteal phase. The follicular phase begins on the first day of menstrual bleeding and continues until ovulation, during which ovarian follicles develop and rising estrogen levels prepare the uterine lining. This phase ends with ovulation, triggered by a surge in luteinizing hormone (LH). The luteal phase follows ovulation and is marked by the formation of the corpus luteum from the ruptured follicle. The corpus luteum secretes progesterone, which stabilizes and further prepares the endometrium for potential implantation. If pregnancy does not occur, the corpus luteum regresses, hormone levels decline, and menstruation begins, initiating a new cycle. While some frameworks subdivide the cycle into four phases, the two-phase follicular–luteal model remains the standard in physiology and clinical research.

Follicle-stimulating hormone and Follicle Development

Follicle-stimulating hormone (FSH), a hormone secreted by the anterior pituitary gland, plays a central role in ovarian follicle development and estrogen production. FSH binds to receptors on granulosa cells, which are the supporting cells surrounding each follicle, stimulating their proliferation and promoting follicular growth. This activation increases the expression of aromatase, the enzyme that converts androgens into estradiol (E2), the primary form of estrogen produced in the ovaries. Through this mechanism, developing follicles generate rising levels of estradiol. FSH

works in concert with luteinizing hormone (LH): LH stimulates theca cells to produce androgens, which granulosa cells then convert to estradiol under FSH influence. The estradiol produced feeds back to the brain to regulate further secretion of FSH and LH, ensuring the coordinated progression of the menstrual cycle.

Estradiol Threshold and Luteinizing Hormone Surge

A sustained peak in estradiol (E2), the primary form of estrogen produced by the ovaries, is the physiological trigger for the luteinizing hormone (LH) surge that leads to ovulation. During the late follicular phase, rising estradiol levels switch from exerting negative feedback on the brain to a positive feedback effect, stimulating gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus. This increase in GnRH drives the pituitary gland to release a surge of LH, which is essential for follicle rupture and egg release. Experimental studies confirm that artificially maintaining high estradiol levels can induce an LH surge even without normal ovarian function, whereas insufficient estradiol prevents it.

Evidence also indicates approximate thresholds for this mechanism. Serum estradiol levels at the time of the LH surge typically range from 200 to 400 pg/mL and must remain elevated for at least 36–50 hours to reliably trigger ovulation, though both concentration and duration vary across individuals. Clinical protocols often use ~200 pg/mL as a practical marker, with the LH surge occurring 24–36 hours after estradiol has reached and sustained its peak. These values are not absolute cutoffs but provide useful guidelines for understanding the hormonal sequence underlying ovulation.

Ovulation and Corpus Luteum Formation

The corpus luteum is a temporary endocrine structure that forms from the remnants of the ovarian follicle after ovulation. Its primary function is to secrete progesterone, a hormone essential for preparing and maintaining the uterine lining for potential implantation. Evidence shows that the corpus luteum produces progesterone in response to luteinizing hormone (LH) pulses, though the relationship is not absolute. In women, progesterone peaks typically follow LH pulses by about 30–45 minutes during the midluteal phase, but some progesterone secretion occurs independently of LH, indicating partial autonomy. Studies in mammals demonstrate that suppressing LH pulses reduces both corpus luteum size and progesterone output, highlighting LH's role in sustaining luteal function. On a cellular level, small luteal cells are highly responsive to LH, increasing progesterone synthesis via the cAMP signaling pathway, while large luteal cells produce progesterone more consistently and rely

less on LH stimulation. The responsiveness of the corpus luteum to LH also diminishes as the luteal phase progresses or regression begins.

Progesterone's Central Role in Pregnancy

Progesterone is universally recognized as the primary progestational hormone, meaning the hormone responsible for enabling and sustaining pregnancy. Its role begins with preparing the endometrium, the uterine lining, for implantation by inducing receptivity and a process called decidualization, in which the lining transforms to support early embryonic growth. Once implantation occurs, progesterone is essential for maintaining uterine quiescence, or the prevention of contractions, and for supporting placental development. It also functions as an "immunosteroid," shaping the maternal immune system toward tolerance of the fetus by promoting regulatory T cells and reducing inflammatory responses. Clinical evidence confirms its indispensability: progesterone withdrawal or antagonism reliably causes pregnancy loss, while supplementation is widely used in assisted reproduction and for reducing miscarriage or preterm birth risk. No other hormone can fully replicate progesterone's combined endocrine and immune effects, underscoring its unique and essential role in both establishing and maintaining pregnancy.

References 52-77.

Gestational Diabetes and Long-Term Health Risks

"gestational diabetes. Diabetes in pregnancy. So someone who was non-diabetic before pregnancy and then develops diabetes. So her blood sugars have now reached a threshold where they are higher than normal and can cause, you know, problems for her pregnancy and herself long term. And up to 50% of those patients who develop diabetes in pregnancy will develop type two diabetes within 10 to 15 years after that gestation, after being pregnant."

Gestational diabetes mellitus (GDM) is defined as glucose intolerance first recognized during pregnancy, usually in the second or third trimester, and is distinct from pre-existing diabetes.

Diagnosis is based on elevated blood glucose levels during oral glucose tolerance testing, though no single standard is used worldwide. The one-step approach, recommended by the World Health

Organization and others, uses a 75 g oral glucose tolerance test between 24 and 28 weeks of gestation, with diagnostic thresholds of ≥5.1 mmol/L fasting, ≥10.0 mmol/L at one hour, or ≥8.5

mmol/L at two hours. The two-step approach, endorsed by the American Diabetes Association and the American College of Obstetricians and Gynecologists, begins with a 50 g glucose challenge test followed by a 100 g oral glucose tolerance test if positive, with diagnosis made when two or more values exceed defined cutoffs. Both approaches confirm that gestational diabetes reflects impaired glucose regulation first detected in pregnancy.

Risks and Complications of Gestational Diabetes

Gestational diabetes poses important health risks for both mother and child. For women, short-term complications include higher rates of preeclampsia, gestational hypertension, preterm delivery, and increased need for cesarean section. Beyond pregnancy, gestational diabetes greatly elevates long-term risks, raising the likelihood of type 2 diabetes by 7–17 times and contributing to higher rates of cardiovascular disease such as heart attack, stroke, and heart failure, even in women who do not develop diabetes. Infants of mothers with gestational diabetes face perinatal risks including excessive birth weight, delivery complications, neonatal hypoglycemia, and respiratory distress, as well as greater need for intensive care. These children are also more likely to develop obesity, impaired glucose tolerance, metabolic syndrome, and type 2 diabetes later in life. Early diagnosis and careful management are therefore critical to reducing both immediate and long-term risks.

Progression to Type 2 Diabetes

Women with a history of gestational diabetes have a substantially increased risk of developing type 2 diabetes later in life. Meta-analyses indicate that around 17% of affected women eventually develop type 2 diabetes, with the risk rising progressively over time: about 20% within 10 years, 29% by 20 years, and up to 39% by 30 years after pregnancy. Overall, prior gestational diabetes confers a 7- to 10-fold higher risk compared to women without the condition. Risk is particularly elevated in those with higher body mass index, non-white ethnicity, or who required insulin during pregnancy.

References 78-87.

Infertility as a Marker of Broader Health Risks

"having infertility, this is a scary statistic. It predisposes you to many medical problems later in life, including an 80% higher chance of having a heart attack, 75% higher chance of having metabolic syndrome, higher risk of cancer, and early death."

Cardiovascular Risk

Infertility is associated with a modestly increased risk of cardiovascular disease, including myocardial infarction, later in life. Large prospective cohort studies show that women with infertility have about a 13–16% higher risk of coronary heart disease compared to women without infertility, with the risk particularly elevated in those whose infertility is due to ovulatory disorders such as polycystic ovary syndrome or endometriosis. Women diagnosed at younger ages also appear to have higher risk. This increased vulnerability is partly explained by a higher prevalence of cardiometabolic risk factors—including obesity, hypertension, dyslipidemia, and diabetes—among women with infertility, alongside biological changes such as more atherogenic lipid profiles and higher inflammatory markers. Importantly, the association is not uniform across all infertility types, and the absolute increase in risk is modest.

Metabolic Syndrome Risk

Infertility in women is associated with a higher risk of developing metabolic syndrome, particularly when the infertility is linked to polycystic ovary syndrome (PCOS) or diminished ovarian reserve. Metabolic syndrome is defined as a cluster of conditions—obesity, insulin resistance, hypertension, and dyslipidemia—that increase the risk of cardiovascular disease and diabetes. Studies consistently show that these risk factors are more prevalent among infertile women compared to fertile controls. For example, the prevalence of metabolic syndrome in women with PCOS-related infertility has been reported at nearly 37%, markedly higher than in the general population. Mechanistic links include insulin resistance, chronic low-grade inflammation, and hormonal disturbances, which both contribute to infertility and predispose to metabolic syndrome. Evidence therefore supports infertility, especially with PCOS or diminished ovarian reserve, as a clinical marker for elevated metabolic risk, underscoring the importance of early screening and management.

Cancer Risk

Infertility in women is linked to a modestly higher risk of certain cancers, particularly ovarian and endometrial cancer. Large cohort studies and meta-analyses show that women with infertility have about a 1.5-fold increased risk of ovarian cancer, with the association strongest in those whose infertility is due to endometriosis or ovulatory disorders. The use of ovarian-stimulating drugs may further raise the risk of borderline ovarian tumors, though the absolute risk remains low and the evidence is limited. Infertility is also associated with an elevated risk of endometrial cancer, especially in women with ovulatory disturbances. In contrast, most studies do not find a consistent overall increase in breast cancer risk, though a small rise in postmenopausal breast cancer has been observed, largely attributable to reproductive factors such as lower parity and later age at first birth. Some evidence also links infertility to a higher likelihood of obesity-related cancers, including thyroid, liver, and gallbladder cancer, but not colorectal cancer. Overall, infertility appears to modestly increase cancer risk, particularly for gynecologic cancers, while the absolute risk for most cancers remains low.

All-Cause Mortality Risk

Infertility in women is associated with a modest but measurable increase in all-cause mortality compared to women without infertility. Large cohort studies have found that infertile women have between a 10% and 32% higher risk of death from any cause, even after adjusting for age, comorbidities, and lifestyle factors. The association is strongest for women who experienced infertility at a younger age and for those who never became pregnant, as well as in cases where infertility was due to ovulatory disorders or endometriosis. The excess mortality risk appears to be driven mainly by higher rates of cancer-related deaths, while links to cardiovascular or diabetes-related mortality are less consistent. Importantly, fertility treatments themselves were not associated with increased mortality. Although the absolute risk of death remains low in both fertile and infertile women, these findings highlight infertility as a marker for elevated long-term health risks.

References 88-102.

Polycystic Ovary Syndrome (PCOS): Insulin Resistance and Systemic Effects

"PCOS is a symptom. There's nothing wrong with my ovaries. They're just responding to this high insulin level.

in PCOS, you have a lot of eggs inside the ovary. It's actually something that genetically runs in families. Likely there's something that happens when your baby inside your mom that predisposes your ovary to not lose as many eggs as it should, and it changes how they respond to insulin. So what happens is you end up having more eggs on an average. Your brain doesn't know this and sends out the average signals, but that gets diluted amongst all the eggs. And so you're not getting into these ovulatory stages (...) What happens from there is that you're actually in a relatively lower estrogen phase than you should be. You never see the progesterone, and what happens is you start to completely shift. The ovary itself actually becomes insulin resistant, and what this means is that throughout your entire body, you start to develop high glucose (...) This becomes very problematic, especially in, we'll say PCOS because that insulin is very inflammatory (...)

Well there's a lot we can do when it comes to managing your PCOS (...) I'll say is that the best way to decrease inflammation in your body is gonna be to start by focusing on your gut (...) the foods you choose to eat, they can be both helpful if they have a lot of fiber in them. They can feed your gut microbiome, which is important in estrogen metabolism, but they can also be very harmful if they are ultra processed foods (...)

actively decreasing stress, and then exercise, building and using skeletal muscle is one of the most effective ways to combat insulin resistance that exists (...) muscle is a massive metabolic help. And as well as bone (...) Now, can you, through lifestyle and hormones, build bone again?

Yes, actually you can."

PCOS and Insulin Resistance

Insulin resistance is a central feature of polycystic ovary syndrome (PCOS) and plays a critical role in both its development and symptoms. Present in most women with PCOS regardless of body weight, insulin resistance leads to compensatory elevations in insulin levels, which stimulate the ovaries to produce excess androgens and disrupt normal ovulation. This mechanism underlies the

hallmark features of the condition: hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. The relationship is bidirectional, as elevated androgens further worsen insulin resistance, creating a self-reinforcing cycle. Beyond reproductive effects, insulin resistance in PCOS increases long-term risks for type 2 diabetes, metabolic syndrome, and cardiovascular disease. Importantly, this resistance involves multiple tissues, including muscle, fat, liver, and the ovary itself, and can occur even in lean women with PCOS, pointing to intrinsic defects in insulin signaling.

The Pathophysiology of PCOS

PCOS develops through a complex interaction of ovarian, hormonal, metabolic, and systemic mechanisms. At the ovarian level, women with PCOS typically show numerous small, immature follicles due to disrupted follicle development and failure to ovulate. Theca cells in the ovary overproduce androgens, a process amplified by hormonal imbalances in the hypothalamic–pituitary–ovarian axis, particularly increased luteinizing hormone and altered gonadotropin signaling. Insulin resistance, present in the majority of women with PCOS regardless of body weight, further drives androgen excess by stimulating the ovary and reducing sex hormone–binding globulin, thereby increasing circulating free androgens. This metabolic dysfunction also contributes to obesity, dyslipidemia, and a higher risk of type 2 diabetes and cardiovascular disease. In addition, chronic low-grade inflammation, oxidative stress, and mitochondrial dysfunction reinforce both reproductive and metabolic disturbances. Genetic, epigenetic, and environmental factors—including prenatal androgen exposure, obesity, and lifestyle—shape susceptibility and presentation.

Gut Health and Inflammation

Gut health plays a significant role in the chronic inflammation and metabolic disturbances characteristic of PCOS. Women with PCOS often show gut microbiota dysbiosis, with reduced microbial diversity, fewer beneficial species such as Akkermansia and Bifidobacterium, and higher levels of pro-inflammatory bacteria. This imbalance weakens the intestinal barrier, leading to increased gut permeability and allowing bacterial endotoxins such as lipopolysaccharide (LPS) to enter the bloodstream. LPS activates immune pathways, raising levels of pro-inflammatory cytokines like IL-6 and TNF- α , which promote insulin resistance, excess androgen production, and ovarian dysfunction. At the same time, dysbiosis reduces production of protective metabolites such as short-chain fatty acids, further amplifying inflammation. These processes form a vicious cycle, as inflammation and metabolic dysfunction worsen gut imbalance. Early evidence suggests that dietary

interventions, prebiotics, probiotics, and microbial metabolites such as butyrate may help restore gut health, reduce inflammation, and improve PCOS outcomes.

Dietary Fiber & PCOS/Gut Health

Dietary fiber is a well-established modulator of the gut microbiome, consistently increasing microbial diversity and supporting beneficial bacteria such as Bifidobacterium and Lactobacillus. These microbes produce short-chain fatty acids that improve intestinal health and systemic metabolic regulation. Fiber also influences estrogen metabolism indirectly through the microbiome: bacterial enzymes such as β -glucuronidase can deconjugate estrogens in the gut, allowing them to be reabsorbed into circulation. Dysbiosis, or low microbial diversity, may reduce this activity and alter estrogen balance. While some studies in women, particularly postmenopausal populations, show associations between higher fiber intake, shifts in gut bacterial composition, and trends toward altered estradiol levels, direct causal evidence remains limited.

Ultra-Processed Foods & PCOS/Inflammation

High consumption of ultra-processed foods (UPFs) is consistently associated with negative effects on gut health. Population studies link higher UPF intake to reduced microbial diversity, lower levels of beneficial bacteria such as Akkermansia muciniphila and Faecalibacterium prausnitzii, and increased prevalence of pro-inflammatory species. Experimental and clinical evidence indicates that common UPF additives, including emulsifiers and artificial sweeteners, can impair gut barrier integrity, leading to increased intestinal permeability ("leaky gut") and chronic low-grade inflammation. These disruptions are connected to higher risks of gastrointestinal conditions such as inflammatory bowel disease and irritable bowel syndrome, as well as systemic outcomes like obesity, metabolic syndrome, and type 2 diabetes.

Stress and Insulin Resistance

Stress reduction has been shown to improve insulin sensitivity by alleviating several biological mechanisms that impair glucose regulation. Chronic psychological or physiological stress increases oxidative and endoplasmic reticulum stress, both of which disrupt insulin signaling, while also promoting inflammation that further contributes to insulin resistance. Interventions that reduce these stressors—such as antioxidants, lifestyle modifications, or stress management practices like mindfulness and yoga—enhance insulin sensitivity in both animal models and human studies. Improvements are also linked to normalization of cortisol (the body's primary stress hormone) and

favorable changes in adipokines—hormones released by fat tissue—including adiponectin (which enhances insulin sensitivity) and leptin (which regulates appetite and energy balance). Overall, the evidence indicates that addressing stress as part of a broader lifestyle strategy is an effective means of supporting metabolic health.

Exercise, Skeletal Muscle, and Insulin Resistance

Exercise and skeletal muscle building are highly effective strategies for improving insulin sensitivity and reducing insulin resistance. Muscle contractions during exercise stimulate molecular pathways, including AMPK (an energy-sensing enzyme that regulates cellular metabolism) and Akt (a key protein in the insulin signaling pathway), which together promote GLUT4 translocation—the movement of glucose transporter proteins (GLUT4) to the surface of muscle cells—thereby increasing glucose uptake independently of insulin. Regular training also enhances mitochondrial function, reduces harmful lipid accumulation in muscle, and lowers inflammation, all of which support healthier insulin signaling. Building muscle mass expands the body's capacity for glucose disposal while improving microvascular perfusion, further strengthening insulin sensitivity. Evidence shows that both aerobic and resistance exercise confer benefits, with effects observable after a single session and persisting for up to 48 hours, and the most pronounced improvements occur in the muscle groups that are actively trained.

Bone Health and Metabolism

Bone is increasingly recognized as a metabolically active organ that contributes to the regulation of energy balance and glucose metabolism. Beyond its structural role, bone functions as an endocrine organ by releasing hormones and signaling molecules, including osteocalcin (which stimulates insulin production and enhances insulin sensitivity), FGF23 (fibroblast growth factor 23, which regulates phosphate metabolism), sclerostin (a regulator of bone formation), and lipocalin 2 (a protein that can influence appetite and energy expenditure). Bone marrow also contains bone marrow adipose tissue (BMAT), which secretes cytokines that affect both skeletal and systemic metabolism and is linked to conditions such as obesity, diabetes, and osteoporosis. Importantly, there is a two-way relationship: metabolic diseases can impair bone health, while bone-derived hormones influence the course of those same diseases. Bone further interacts with muscle and fat through secreted factors—known as osteokines, myokines, and adipokines—making it a central component of the body's metabolic network.

Bone regeneration in adults can be supported by both hormonal therapies and lifestyle factors, though the extent of benefit depends on context and application. Hormonal therapies such as parathyroid hormone (PTH)—FDA-approved for osteoporosis—have demonstrated strong anabolic effects by stimulating bone-forming cells (osteoblasts), accelerating fracture healing, and promoting regeneration. Other hormones and growth factors, including thyroid hormones, insulin-like growth factor 1 (IGF-1), and bone morphogenetic proteins (BMPs), also regulate bone remodeling, though their clinical use must be approached with caution due to risks like abnormal tissue growth or metabolic imbalance. Alongside these targeted therapies, lifestyle factors such as adequate nutrition (calcium, vitamin D, protein), weight-bearing exercise, and avoiding smoking or excessive alcohol intake remain foundational for bone health, as they create favorable conditions for bone remodeling and enhance the effectiveness of medical interventions. Emerging research in tissue engineering is developing advanced delivery systems—such as hydrogels and scaffolds inspired by the extracellular matrix—to release growth factors in a controlled way, further improving the safety and efficacy of regenerative treatments.

References 103-135.

Fasting, Cortisol, and Circadian Disruption in Women

"when a woman's like, I'm just having coffee for breakfast and I'm gonna hold my fast, it's like, okay, well here we go. Cortisol's going up and you're gonna get hungrier, then you're gonna learn not to respond to that hunger. You are gonna hold your fast. And we see from the research that women who do that end up craving more simple carbohydrates in the afternoon (...) contributing to poor sleep because they've now phase shifted. So when we're talking about sleep and how important sleep is, we also have to think about the circadian rhythm and how it is affected by food intake."

Fasting, Cortisol, and Hunger

Fasting generally increases cortisol—the body's primary stress hormone—in women, though the effect depends on fasting type, menstrual phase, and individual characteristics. Short-term total fasting of 24–72 hours raises cortisol by 20–70%, reflecting activation of the hypothalamic-pituitary-adrenal (HPA) axis, the system that coordinates stress and metabolic

responses. Increases are observed across age groups, though rhythm and magnitude may vary, and menstrual phase influences results, with some evidence of heightened cortisol in the midluteal phase but reduced levels in other luteal conditions. Intermittent fasting, such as during Ramadan, produces more variable effects: some studies show stable or lower morning cortisol, while others find increases, particularly with prolonged fasting or during pregnancy. Notably, circadian disruption can occur, with shifts toward higher evening cortisol. Overall, fasting is most consistently linked to elevated cortisol when caloric deprivation is complete, but responses are modulated by hormonal status, energy availability, and fasting regimen.

Fasting and Food Cravings

Intermittent fasting is often associated with stronger food cravings later in the day, particularly for simple carbohydrates such as sugary or starchy foods. Research shows that the longer a fasting period extends, the greater the likelihood of increased craving intensity and even binge eating episodes, with cravings frequently directed toward foods perceived as restricted. Diets that combine fasting with carbohydrate limitation appear to heighten this effect, as cognitive restraint—the mental effort of consciously restricting food—can amplify preoccupation with sweet or starchy foods and feelings of loss of control when breaking the fast. Some evidence suggests that actual intake of specific foods, like bread, may not always increase, yet the subjective desire for such foods often does. In contrast, individuals on strict ketogenic diets (very low carbohydrate regimens) report reduced cravings for sweets and starches over time, but this adaptation does not necessarily extend to other fasting approaches.

Fasting, Circadian Rhythm, and Sleep

The timing of food intake plays an important role in regulating circadian rhythms and maintaining sleep quality. Meals act as zeitgebers—external cues that synchronize the body's internal clocks—and shifting them to later in the day can alter the timing of peripheral rhythms, such as glucose metabolism and gene expression in tissues like the liver, even if the brain's central clock remains stable. Eating late, especially during the biological night when melatonin is rising, is linked to circadian misalignment, greater body fat, and increased risk of metabolic disorders, regardless of total calorie intake. Erratic or mistimed eating further disrupts hormone cycles, including those of melatonin, cortisol, leptin, and insulin, impairing metabolic regulation. These disruptions are also associated with shorter and poorer-quality sleep, whereas earlier, time-restricted eating supports stronger circadian alignment, improved metabolic health, and more restorative sleep.

Low Estrogen and Amenorrhea: Health Consequences

"How many women have said, well, I didn't get my period for a year, but that was fine by me, but that's not fine by your body. That is hypo-estrogenic time. It is low estrogen (...) It's bad for your body on so many reasons to be low estrogen during these crucial bone building years ..."

Secondary amenorrhea—the absence of menstrual periods for several months in women who previously had regular cycles—has wide-ranging health consequences, largely driven by estrogen deficiency. Low estrogen leads to reduced bone mineral density, increasing the risk of osteopenia (early-stage bone loss), osteoporosis, and fractures, particularly when amenorrhea occurs during adolescence or early adulthood, the critical years for building peak bone mass. The loss of estrogen's protective effects also contributes to unfavorable changes in blood lipids and vascular function, raising long-term cardiovascular risk. Reproductive consequences include anovulation and infertility, along with a higher likelihood of miscarriage and preterm delivery. Mental health can also be affected, with elevated rates of depression, anxiety, and cognitive decline reported in women with amenorrhea. Finally, metabolic disturbances such as low insulin and IGF-1 (insulin-like growth factor 1) are common, and amenorrhea often signals underlying issues such as eating disorders or chronic stress. Together, these findings underscore that secondary amenorrhea is not benign: it reflects a systemic hormonal imbalance with serious consequences for bone, cardiovascular, reproductive, and mental health..

References 147-151.

Heavy Menstrual Bleeding and Iron Deficiency Anemia

"women who have heavy periods (...) can lead to anemia."

Heavy menstrual bleeding is one of the most common causes of iron deficiency anemia in women of reproductive age. Excessive blood loss during menstruation depletes iron stores, and studies show that women with heavy periods may lose five to six times more iron per cycle than

those with typical bleeding patterns. This loss can progress from iron deficiency to clinically significant anemia, affecting as many as one-third of women who experience heavy menstrual bleeding. The consequences include fatigue, weakness, impaired concentration, and reduced quality of life, with severe cases occasionally requiring urgent treatment such as transfusion. Even in the absence of anemia, iron deficiency can compromise daily functioning and, during pregnancy, may negatively impact fetal development. These findings highlight the importance of early recognition and treatment of heavy menstrual bleeding to protect women's long-term health.

References 152-154.

Post-Contraceptive Cycle Recovery and Endometrial Damage

"it can take months to return to normal after coming off of hormonal contraception. You also can get damage to the endometrial lining (...) And this can get damaged from typically anything inside the uterus. So most commonly, this is post birth, you know, a traumatic birth, a retained placenta, a DNC procedure, which is sometimes used after birth or in a miscarriage or even IUDs or intrauterine surgery."

Hormonal Contraception and Recovery

For most women, menstrual cycles return to normal within one to three months after discontinuing hormonal contraception, though the timeframe depends on the type of contraceptive used. Oral contraceptives, vaginal rings, patches, and hormonal IUDs are generally followed by a rapid recovery, with ovulation and cycle regularity typically restored within two to three months. In contrast, injectable contraceptives such as Depo-Provera are linked to longer delays, with many women experiencing a return to normal cycles only after five to eight months, and some requiring up to a year. The first post-contraceptive cycle may be slightly irregular or prolonged, but subsequent cycles usually align with pre-contraceptive patterns. Women who had regular cycles before initiating contraception are most likely to regain regularity quickly, whereas those with pre-existing irregular cycles may experience longer recovery times.

Endometrial Lining Damage

Intrauterine procedures such as dilation and curettage (D&C), intrauterine device (IUD) insertion, and intrauterine surgery can cause damage to the endometrial lining, sometimes leading to long-term reproductive complications. D&C, a procedure often performed after miscarriage or delivery, can injure the basal layer of the endometrium, resulting in intrauterine adhesions (IUAs)—also known as Asherman's syndrome—where scar tissue replaces normal lining. This can cause reduced or absent menstruation, infertility, and higher risks during pregnancy. While IUDs are generally safe, improper placement or prolonged retention may trigger excessive inflammation, infection, or fibrosis, particularly with copper IUDs, and in rare cases can contribute to adhesions. Similarly, intrauterine surgeries such as myomectomy or adhesiolysis carry risks of scarring, endometrial thinning, and diminished regenerative capacity. The consequences include impaired embryo implantation, infertility, and increased miscarriage risk, and even after treatment, adhesions may recur. Careful procedural technique and follow-up are therefore critical to preserving endometrial health.

References 155-159.

Menstrual Blood Loss and Iron Deficiency in Women

"are women more iron deficient than one would think? (...) A menstruating woman. Yes."

Menstruating women are at heightened risk of iron deficiency because of the regular blood loss that occurs with each cycle. This loss increases iron requirements, and if dietary intake or supplementation is insufficient, it can progress to iron deficiency or iron deficiency anemia. The risk is particularly high in women with heavy menstrual bleeding, who may lose five to six times more iron per cycle than women with normal flow; studies indicate that up to 30–60% of these women develop deficiency or anemia. Globally, more than 20% of women of reproductive age are iron deficient, and nearly a third experience anemia. The consequences extend beyond blood health, including fatigue, reduced concentration, diminished exercise capacity, hair loss, and restless legs syndrome—even before anemia is formally diagnosed. Iron deficiency can also impair quality of life, work, and school performance, and in pregnancy it poses risks to fetal neurodevelopment. Regular monitoring and adequate iron intake are therefore essential for women during their reproductive years.

Endometriosis: Inflammation, Diagnosis, and Impact on Fertility

"Endometriosis is an inflammatory condition. And the way I like to explain it is when your body responds abnormally to a normal process, you have immune dysfunction as well(...)

One of the hardest things about endometriosis is that it's a surgical diagnosis only (...) which means have to do surgery to fully see and diagnose that you have the disease (...)

We do have symptomatic relief, (...) and that's gonna help hopefully with some of your symptoms, and it can, for some women, it doesn't reverse disease, it doesn't cure it, it doesn't make anything better. But it can slow down the progression, any of these treatments that do halt the ovulatory process, but it severely impacts (...) your mental, your emotional health, your relationships, but your fertility - stage three or four disease, regardless of your age, you're gonna have a less than a 20% chance of conceiving naturally over the course of your life (...)

50% of patients with unexplained infertility have endometriosis and is so hard to diagnose and underdiagnosed yet impactful to our body"

Diagnosing Endometriosis

Endometriosis is widely recognized as a chronic, estrogen-dependent inflammatory disease. The condition arises when tissue resembling the endometrium grows outside the uterus, provoking a persistent inflammatory response in the pelvic cavity and, in some cases, throughout the body. Women with endometriosis frequently show signs of immune dysfunction, including increased activity of macrophages (immune cells that drive inflammation), impaired function of natural killer cells (which normally help clear abnormal tissue), and elevated levels of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Endometriotic lesions themselves release inflammatory mediators—prostaglandins, chemokines, and interleukins—that contribute to pain, lesion growth, and infertility. Systemic inflammation is also observed, with higher levels of markers like C-reactive protein (CRP) and serum amyloid A (SAA), and the condition is often associated with other inflammatory and autoimmune disorders. These findings place inflammation at the core of endometriosis pathophysiology and its impact on health.

Diagnosing Endometriosis

Surgery, typically through laparoscopy with or without tissue biopsy, has long been regarded as the gold standard for diagnosing endometriosis because it allows direct visualization and confirmation of lesions. However, this approach is invasive, costly, and often delays treatment. Non-surgical methods—such as careful clinical history, physical examination, and advanced imaging techniques like transvaginal ultrasound (TVUS) and MRI—are now widely accepted as accurate for diagnosing advanced subtypes, including ovarian endometriomas and deep infiltrating endometriosis. In expert hands, imaging can sometimes equal or surpass surgery in detecting specific lesion sites, reducing the need for surgical confirmation in many cases. Nonetheless, these approaches have important limitations: they are far less sensitive for detecting superficial or early-stage disease, their accuracy depends heavily on operator expertise and technology, and they cannot provide comprehensive mapping of adhesions or atypical lesions. Biomarkers remain under investigation but currently lack the reliability to replace imaging or surgery. Thus, while non-surgical tools are valuable for identifying advanced disease and guiding treatment, surgery remains necessary in cases where disease is suspected but not visualized, or where full assessment of extent and severity is required.

Treatment Effects

Current treatments for endometriosis are effective in reducing symptoms and can slow disease progression, but they do not cure the condition. Hormonal therapies—such as combined oral contraceptives, progestins, and GnRH agonists or antagonists—are supported by clinical trials as significantly improving pelvic pain and painful menstruation, while non-hormonal approaches like NSAIDs, physical therapy, or dietary changes may also help, though the evidence is less robust. Surgical removal of lesions can relieve pain in the short term, but recurrence is common. By suppressing ovarian function, hormonal therapies can limit or delay progression and recurrence, yet symptoms and lesions often reappear once treatment stops. Combining surgery with postoperative hormonal therapy may extend symptom-free periods. Research into new options, including immunotherapies and antioxidant-based strategies, is ongoing but not yet established for routine care. Overall, available treatments manage symptoms and slow disease activity while used, but long-term remission remains elusive.

Psychological and Social Impact

Endometriosis exerts a profound toll on mental health and quality of life, extending well beyond its physical symptoms. High rates of depression, anxiety, and psychological distress are consistently reported, with studies showing depressive symptoms in up to nearly all affected individuals and similarly elevated rates of anxiety. These outcomes are linked not only to chronic pain but also to diagnostic delays, social stigma, and a sense of powerlessness that often accompanies the disease. Quality of life is markedly reduced compared to healthy women and even those with other chronic illnesses, with the most affected areas including physical functioning, emotional well-being, social life, and vitality. Endometriosis also disrupts work productivity, intimate relationships, and sexual health, while lowering self-esteem and prompting social withdrawal. Pain severity, ongoing symptoms, and lack of support strongly predict poorer outcomes. These findings highlight the need for comprehensive care that addresses not just physical treatment but also the psychological and social dimensions of living with endometriosis.

Fertility in Advanced Endometriosis

Women with stage III or IV endometriosis have reduced chances of conceiving naturally compared to those without the disease, but pregnancy is still possible, particularly following surgical treatment. Reported postoperative natural conception rates vary widely, from around 20% in some studies of stage IV disease to more than 70% in others, with most pregnancies occurring within 6–12 months after laparoscopic excision of lesions. Large studies indicate that the majority of women who achieve pregnancy after surgery do so without assisted reproductive technologies. Success rates are influenced by several factors, including younger maternal age, the absence of coexisting conditions such as adenomyosis, and higher scores on the Endometriosis Fertility Index (EFI), a tool used to predict fertility outcomes after surgery. Overall, while advanced endometriosis lowers the likelihood of natural conception compared to milder disease stages, many women remain able to conceive naturally, especially when surgical management is combined with favorable prognostic factors.

Prevalence in Unexplained Infertility

Endometriosis is a common underlying factor in unexplained infertility, with studies showing that between 29% and 57% of affected women are found to have the condition when evaluated by laparoscopy. Most cases in this context are minimal or mild, which may not always present with obvious symptoms but can still impair fertility. A 2024 systematic review reported a prevalence of 44% among women with unexplained infertility, while some highly selected groups—such as women with repeated failed reproductive treatments—showed much higher rates, though these likely reflect

selection bias. Earlier literature also places prevalence within the 20–50% range. Taken together, these findings highlight that endometriosis is present in a substantial proportion of women with unexplained infertility and should be carefully considered in their evaluation and management.

References 165-183.

Cold Water Exposure and Physiological Stress Responses

"we're talking about cold water exposure. It creates a cascade of immune responses that kind of protects the body. So we're reducing inflammation (...) Okay. But not ice baths that we see in all the popular media, because that is way too cold for a woman's body. It does the opposite.

It's a severe stress and causes a stress response rather than a parasympathetic calming response (...)"

Cold Water Exposure and Immune/Inflammatory Response

Cold water immersion produces mixed effects on inflammation and immune function, with responses varying by timing, temperature, and frequency of exposure. Acutely, immersion tends to increase inflammatory markers such as interleukin-6 (IL-6), a signaling protein that promotes inflammation, and tumor necrosis factor-alpha (TNF- α), another pro-inflammatory molecule, within the first hour—reflecting a short-term stress response. Some studies report delayed reductions in specific cytokines (cell-signaling proteins that regulate immune and inflammatory processes), but these anti-inflammatory effects are inconsistent. Compared to other recovery strategies, cold water immersion does not consistently outperform active recovery in reducing post-exercise muscle inflammation, though it may sometimes help restore performance.

On the immune side, immersion causes immediate shifts, including a rise in neutrophils (white blood cells that form part of the body's first line of defense against infection) and a fall in lymphocytes (immune cells essential for targeted responses and long-term immunity). These changes are consistent with stress physiology rather than a straightforward immune boost. Longer-term exposure, such as repeated cold immersion or cold showers, has been linked to modest increases in certain immune markers and reduced self-reported illness, but results remain variable and the clinical relevance uncertain. Overall, cold exposure provokes acute inflammation and immune

changes, with limited and inconsistent evidence for longer-term anti-inflammatory or immune-enhancing effects.

Ice Baths and Stress Responses

Very cold water immersion, such as ice baths, reliably provokes a strong physiological stress response. Immersion at 8–14°C triggers an acute "cold shock" reaction, characterized by sharp increases in stress hormones like norepinephrine, adrenaline, and cortisol, alongside rises in heart rate and blood pressure. While short-term exposure is usually safe for healthy individuals, the stress response can be harmful for those with cardiovascular disease, hypertension, or other vulnerabilities, due to risks such as arrhythmias, blood pressure spikes, or dangerous drops in core temperature after leaving the water. Prolonged or repeated ice bath exposure may also suppress immune function and elevate oxidative stress, potentially leading to inflammation or tissue damage. Although widely practiced, ice baths must therefore be approached cautiously, as they reliably activate stress pathways and can pose health risks in susceptible individuals.

In women, ice baths induce a pronounced acute stress response, with some evidence suggesting greater cardiovascular strain than in men. Immersion at very cold temperatures (around 8°C) elevates heart rate and arterial pressure, while women also experience more frequent cold-induced vasodilation reactions and report greater thermal discomfort than men under the same conditions. These findings indicate heightened perceptual and cardiovascular stress. However, hormonal markers of stress—including noradrenaline, adrenaline, and cortisol—rise sharply in both sexes without consistent differences, suggesting that women's hormonal stress responses are similar to men's, even if cardiovascular and subjective responses are more pronounced.

References 184-187.

Chronic Inflammatory Diseases and Sex Differences

"Chronic inflammatory diseases are the number one thing that we see across the board impacting the population, but especially women."

Chronic inflammatory diseases (CIDs) are highly prevalent worldwide and represent a major public health burden, contributing to long-term illness, reduced quality of life, and increased

healthcare use. Conditions such as inflammatory bowel disease (IBD), which affects around 0.3% of the global population, rheumatoid arthritis, asthma, and chronic pain syndromes are among the most common. These disorders are often early-onset and persistent, and they carry significant risks of comorbidities such as arthritis, anemia, and even certain cancers.

Sex differences are pronounced: women are disproportionately affected by many CIDs, particularly autoimmune and pain-related conditions. For example, rates of chronic pain and arthritis reach 57% and 8% in women, compared to 42% and 4.5% in men. Biological mechanisms underlying this disparity include stronger baseline immune responses in women, the influence of sex hormones such as estrogen, and genetic factors linked to the X chromosome. Chronic inflammation also tends to produce more tissue damage and worse outcomes in women in diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis, though men are more affected by certain conditions like Guillain-Barré syndrome. Overall, CIDs are widespread and debilitating, and their uneven distribution between sexes underscores the need for sex-specific approaches to prevention and treatment.

References 188-193.

Hormonal Contraceptives and Suppression of Ovulation

"The birth control pill shuts off the brain's desire to send the signal to the ovary to make hormones (...) And so your brain says, we don't need an egg to grow. So ovulation starts in the brain (...) So no FSH comes out and you're not gonna get ovulation (...)

And so that is how they are sometimes helpful if you have (...) hemorrhagic cyst with ovulation (...) the birth control pill can prevent ovulation, therefore prevent some women from being in terrible pain. If you have PCOS, it (...) will decrease testosterone levels, which is sometimes a good side effect of the pill for women who have PCOS back to a normal level. But if you don't have PCOS (...) a lot of times your body's tissues are not responding to synthetic estrogen and progesterone the same way it does to natural. I think that's a very important point."

Combined oral contraceptives (COCs) prevent ovulation by disrupting the hormonal signals that normally pass from the brain to the ovaries. They act on the hypothalamic-pituitary-ovarian (HPO) axis, the system that coordinates reproduction. The progestin component (a synthetic form of

progesterone) suppresses luteinizing hormone (LH), the hormone responsible for triggering egg release, by reducing pulses of gonadotropin-releasing hormone (GnRH) from the hypothalamus, a brain region that regulates hormonal rhythms. This prevents the mid-cycle LH surge, the key signal that normally causes ovulation. At the same time, the estrogen component inhibits follicle-stimulating hormone (FSH), which is needed for ovarian follicles (egg-containing sacs) to grow and mature. With both LH and FSH suppressed, no dominant follicle develops and no egg is released. While small amounts of ovarian activity may still occur, ovulation is effectively blocked and the corpus luteum—a hormone-producing structure that normally forms after ovulation—does not develop. Over the long term, COC use also reduces ovarian reserve markers such as anti-Müllerian hormone (AMH), a hormone that reflects the remaining egg supply, and antral follicle count, a measure of visible small follicles on ultrasound. In this way, COCs reliably prevent ovulation by overriding the brain's natural instructions to the ovaries.

Combined Oral Contraceptives for Hemorrhagic Cysts

COCs can play a preventive role in hemorrhagic ovarian cysts, which occur when a blood vessel inside a cyst ruptures, leading to internal bleeding and pain. By suppressing ovulation, COCs reduce the formation of both follicular cysts and corpus luteum cysts, the two main types of functional cysts that can become hemorrhagic. This prevention is particularly helpful for women at higher risk, such as those with bleeding disorders or who take anticoagulant medications. However, there is little evidence that COCs help resolve an existing hemorrhagic cyst. Current data suggest their benefit lies mainly in preventing recurrence rather than treating acute episodes, which may require medical monitoring or surgical management in severe cases.

Combined Oral Contraceptives Lower Testosterone in PCOS

Combined oral contraceptives (COCs) are a well-established treatment for lowering testosterone levels in women with polycystic ovary syndrome (PCOS), a condition marked by excess androgens (male-type hormones) and irregular cycles. Research shows that COCs reduce both total and free testosterone through two mechanisms: they suppress ovarian production of androgens and they increase levels of sex hormone—binding globulin (SHBG), a protein in the blood that binds testosterone and makes it inactive. This effect is seen across most pill formulations, though those containing antiandrogenic progestins—such as cyproterone acetate or drospirenone—tend to be more effective. Compared to the insulin-sensitizing drug metformin, COCs are generally more effective at reducing testosterone, though combination therapies (e.g., COC plus metformin or

spironolactone) may have added benefits. Clinically, lowering testosterone with COCs leads to improvements in hyperandrogenic symptoms like excess hair growth (hirsutism) and acne, especially with longer treatment. In this way, COCs not only regulate cycles but also directly address the hormonal imbalances of PCOS.

Tissue Responses to Synthetic vs. Natural Hormones

Body tissues do respond differently to the synthetic hormones used in contraceptives compared to natural estrogen and progesterone. Synthetic estrogens, such as ethinyl estradiol, and various progestins (synthetic forms of progesterone) have slightly altered chemical structures, which means they bind differently to hormone receptors and trigger distinct patterns of gene expression—the way genes are turned on or off inside cells. For example, in the endometrium (the lining of the uterus), synthetic progestins can produce effects that natural progesterone does not fully replicate, with each type of progestin (e.g., levonorgestrel, medroxyprogesterone acetate) producing its own signature changes. In the brain and immune system, synthetic hormones can also act differently, altering neurotransmitters (the brain's chemical messengers) and cytokines (immune signaling proteins) in ways that may diverge from natural hormones.

Clinically, these differences are most visible in the liver, where synthetic estrogens more strongly affect metabolism and blood clotting factors, raising the risk of cardiovascular and clotting problems compared to natural estradiol. Synthetic progestins, when combined with estrogen, have also been linked to a higher breast cancer risk than natural progesterone, likely because they interact with other hormone receptors in addition to progesterone receptors. Overall, these findings show that synthetic contraceptive hormones are not exact substitutes for natural ones, and their different effects on body tissues have important implications for both benefits and risks.

References 194-203.

Celiac Disease and Recurrent Pregnancy Loss

"celiac disease is essentially an allergic reaction to gluten (...) And recurrent pregnancy loss can be one of the signs and symptoms of it" Celiac disease, an autoimmune condition in which the body reacts abnormally to gluten, has been linked to a higher risk of recurrent pregnancy loss (RPL), defined as two or more consecutive miscarriages. Meta-analyses and case reports show that women with celiac disease are more likely to experience RPL than women without it, with some evidence that the genetic markers most strongly associated with celiac disease (HLA-DQ2/DQ8) are also more common in women affected by recurrent miscarriage. In some cases, women with unexplained pregnancy losses have later been diagnosed with celiac disease, and outcomes have improved once they adopted a gluten-free diet. However, the overall contribution of celiac disease to RPL is considered small. Several large case-control studies have found no significant differences in celiac antibody levels between women with RPL and those without, suggesting that it is not a frequent underlying cause. For this reason, most guidelines do not recommend routine celiac screening for all women with recurrent miscarriage, though testing may be warranted when other risk factors or symptoms of celiac disease are present.

References 204-208.

Mechanism of Intrauterine Device (IUD) Contraception

"so the way an IUD works is that it creates an inflammatory response in the uterus so that the cervical mucus thickens so that when we are fertile in our fertility window mid cycle (...) the presence of the IUD creates an inflammatory environment that basically is toxic to sperm and thickens the cervical mucus where it becomes a plug."

Intrauterine devices (IUDs) prevent pregnancy by creating a uterine environment that makes it very difficult for sperm to survive or fertilize an egg. There are two main types. Copper IUDs slowly release copper ions, which are directly toxic to sperm, reducing their ability to move (motility) and survive. They also trigger a local, sterile inflammatory reaction in the endometrium (the lining of the uterus), drawing in immune cells that further interfere with sperm and egg function. While they may sometimes affect implantation, their main action is before fertilization. Hormonal IUDs, which release levonorgestrel (a synthetic version of the hormone progesterone), work differently: they thicken cervical mucus, creating a plug-like barrier that makes it hard for sperm to enter the uterus, and they thin the endometrium, lowering the chance that a fertilized egg could implant. In some women, they also suppress ovulation, though this is not their primary effect. Both types are among

the most effective reversible contraceptives, with failure rates of less than 1% per year. The copper IUD also has the added benefit of serving as emergency contraception if inserted within five days after unprotected sex.

References 209-212.

Differences Between Ethinylestradiol and Estradiol

"Ethinylestradiol is very different than plain estradiol. They've put this ester group on the end, which makes it bind to the estrogen receptor in the brain 300 times more powerful than regular estradiol."

Ethinylestradiol and estradiol differ markedly in structure, potency, and biological impact. The addition of an ethinyl group (a chemical side group that prevents rapid breakdown in the liver) at the 17α position makes ethinylestradiol more resistant to hepatic metabolism and up to several hundred times more potent in stimulating liver protein synthesis than natural estradiol. This modification extends its half-life and systemic effects, contributing to stronger suppression of pituitary hormones and greater increases in sex hormone-binding globulin. However, the same hepatic stimulation elevates clotting factors and venous thromboembolism risk (blood clotting), whereas estradiol and its valerate form exert milder effects on coagulation, metabolism, and vascular health. Estradiol also supports nitric oxide production and antioxidant activity in endothelial cells, benefits not observed with ethinylestradiol. Overall, ethinylestradiol's enhanced potency arises from metabolic stability rather than direct receptor binding, resulting in distinct profiles of efficacy and risk.

References 213-216.

Effectiveness and Limitations of Natural Family Planning

"studies have proven within the shadow of a doubt that relying on natural family planning at most stages is not a reliable form of contraception." Natural family planning (NFP) can be highly effective under perfect use but shows substantially lower reliability in real-world conditions. When followed precisely, annual pregnancy rates range from about 0.4% to 5%, comparable to some non-hormonal contraceptives. However, with typical use, failure rates rise considerably—commonly between 6% and 20%, and in some studies exceeding this—primarily due to inconsistent application and user error. In contrast, hormonal contraceptives such as pills, patches, intrauterine devices, and implants exhibit much lower failure rates, particularly among long-acting methods. Barrier methods like condoms are generally more effective than NFP under typical use but less so than hormonal approaches. While NFP avoids hormonal exposure and aligns with certain personal or religious preferences, its efficacy depends heavily on user training, motivation, and cycle regularity, making it less reliable for most individuals in everyday practice.

References 217-222.

Estetrol (E4) as a Novel Estrogen Therapy

"if it was available in the US I think I would go with the Estetrol (...) it looks like (...) it has less of the downstream effects (...) and also probably has less risk of DVT [Deep vein thrombosis] of blood clots."

Estetrol (E4) is a naturally occurring estrogen produced by the human fetal liver during pregnancy and recently introduced into oral contraceptives. Its structure, containing four hydroxyl groups, distinguishes it from other estrogens such as estradiol and ethinylestradiol, giving it unique pharmacological properties. E4 shows high oral bioavailability, a long half-life, and selective activation of nuclear estrogen receptor alpha without engaging membrane receptors, which may explain its tissue-specific actions. Clinical studies indicate that estetrol exerts minimal effects on liver metabolism, hemostasis, and breast tissue, suggesting a lower risk of thromboembolic events and other estrogen-related side effects. These characteristics have led to its use in combination contraceptives and its ongoing investigation for menopausal therapy and hormone-sensitive cancers.

References 223-227.

Hormonal Fluctuations and Premenstrual Dysphoric Disorder (PMDD)

"In the luteal phase, we do tend to see more mood changes and physical changes. And a lot of this is because we have an increase in estrogen and progesterone and then a decrease in both of these hormones. And what we find is that some women are simply more sensitive to these changes. They feel them quite profoundly. And there's even something called PMDD, premenstrual dysphoric disorder, which is when those hormones are dropping, you get these terrible mood swings, this terrible depression and anxiety in addition to physical changes with terrible fatigue (...)

Hormonal fluctuations during the luteal phase can influence both mood and physical well-being, with pronounced effects in women who are more sensitive to these changes. Rising progesterone and its neuroactive metabolite allopregnanolone, alongside fluctuating estrogen levels, alter neurotransmitter systems such as GABA and serotonin that regulate mood and anxiety. In susceptible individuals, particularly those with premenstrual dysphoric disorder (PMDD), these shifts can disrupt GABAergic signaling and increase stress sensitivity, contributing to irritability, depression, and anxiety. Physical symptoms—including breast tenderness, bloating, fatigue, and appetite changes—are also common during this phase, even in women without mood disturbances. Overall, the degree of emotional and physical impact depends largely on individual hormonal sensitivity rather than the absolute levels of progesterone or estrogen.

Premenstrual dysphoric disorder (PMDD)

Premenstrual dysphoric disorder (PMDD) is a severe, hormone-sensitive mood disorder that emerges cyclically during the luteal phase of the menstrual cycle. Recognized in both the DSM-5 and ICD-11, it is defined by recurrent affective, behavioral, and physical symptoms—such as marked mood swings, irritability, depression, anxiety, fatigue, and bloating—that appear in the week before menstruation and subside shortly after onset. To meet diagnostic criteria, at least five symptoms must be present, including one core mood symptom, and they must cause significant functional impairment. Affecting roughly 3–8% of women of reproductive age, PMDD can disrupt work, social relationships, and overall well-being to a degree comparable with major depressive disorder. Its underlying mechanism involves abnormal sensitivity to normal hormonal fluctuations, particularly interactions between neuroactive steroids like allopregnanolone and neurotransmitter systems such as GABA and serotonin.

References 228-234.

The Menopausal Transition: Physiological and Psychological Changes

"in the perimenopause transition, we have a 40% increase in mental health changes (...) what's happening is that our neurotransmitters, especially gaba, serotonin and dopamine levels are highly tied to what our hormone levels are doing (...)

And we see cognitive changes. So our ability to cognitively function (...)

So the average age of menopause is 51 to 52 (...) For most women, about seven to 10 years before that, they will start to enter into what we will call perimenopause (...)

If you've had a first degree relative, go through menopause at 46 or sooner, you have a six times likelihood of going into early menopause (...)

You have a increase in inflammatory responses, which changes the way the liver's perceiving free fatty acids. So you end up storing more of that visceral fat (...) And so when we start looking at, at some of the interventions for improving insulin sensitivity, it's doing high intensity exercise to activate what we call a glute four protein, which is a protein in the cell wall that when stimulated through exercise (...)

if you take a 50-year-old, one is premenopausal and one is postmenopausal, she has a 2x risk of metabolic syndrome (...) So in the lipids we have cholesterol and triglycerides and so those come together to increase her risk of diabetes, hypertension, stroke, early death, cardiovascular disease (...) the other is visceral fat (...) it is linked to cardiovascular disease, diabetes, hypertension, stroke (...)

menopause (..) is ovarian failure. And we're calling it ovarian failure on purpose because at this moment you're not gonna make estrogen. The brain is sending out all the signals it can, very high FSH, trying to get estrogen to be made. There's no eggs. So there is no estrogen (...) our friends in the medical world do not define this moment as menopause. They make you sit here and be estrogen low for a year and have no period for a year before they will stay you're in menopause if they even decide to treat (...) So what's the harm of waiting a year before people take it seriously? What happens? Suicide, mental health changes rapidly (...) the most likely time for a woman to commit suicide is between the ages of 45 and 55 (...) SSRI prescriptions, which are antidepressants, they double across the menopause transition (...)

there's a really great window of using hormones to treat mental health disorders and seeing improvement in mood and also some in cognition by giving estrogen or estrogen plus the progestin early in perimenopause before the periods actually stop, and it actually works better than an SSRI (...) So this is really a perimenopausal kind of window of opportunity. In post menopause, they aren't responding as well (...)

arthralgia, which is total body pain. It's part of the inflammatory response of not having estrogen. It's part of the musculoskeletal syndrome of menopause."

Mental Health Changes in the Perimenopausal Transition

The perimenopausal transition is a period of heightened vulnerability to mental health changes, with up to one-third of women experiencing significant psychological symptoms. Compared with premenopause, the risk of developing depressive symptoms roughly doubles, and those with a history of depression are at especially high risk, though even women without prior episodes show increased susceptibility. Anxiety, emotional instability, and diminished self-worth are also frequently reported, particularly in early perimenopause when hormonal fluctuations are most pronounced. Estrogen variability appears to be a key predictor of depressive symptoms, while psychosocial stress, low self-esteem, and negative body image further increase risk. Conversely, resilience, self-efficacy, and strong social support can mitigate these effects. Women are most likely to die by suicide between the ages of 45 and 55 compared to other adult age groups. The menopausal transition (typically occurring between ages 45–55) is associated with increased risk of depression and suicide, especially in women with early or premature menopause.

Increased Antidepressant Prescription Rates

Antidepressant prescription rates rise notably during the menopausal transition, paralleling an increased prevalence of mood symptoms and depressive disorders. Approximately one in three perimenopausal women are prescribed antidepressants or anxiolytics for mood disturbances, representing a significant increase compared with premenopausal years. While these medications can be effective for clinically diagnosed depression, guidelines caution that they may be inappropriate as first-line treatment for hormonally driven mood symptoms. Hormone replacement therapy (HRT), particularly when initiated early, may better address the underlying estrogen deficiency and can allow some women to taper or discontinue antidepressant use. Treatment response also varies, with postmenopausal women showing lower efficacy rates, underscoring the

importance of individualized care that distinguishes between depressive illness and menopause-related affective changes.

Hormone Levels and Neurotransmitter Systems in Perimenopause

Fluctuating hormone levels during perimenopause disrupt key neurotransmitter systems involved in mood and cognition, contributing to increased emotional and cognitive vulnerability. Declines and variability in estrogen reduce serotonin synthesis and receptor expression in regions such as the amygdala and raphe nucleus, lowering overall serotonin availability. Shifts in ovarian hormones also alter neurosteroid production, particularly allopregnanolone, which modulates GABA_A receptor (a receptor that regulates calming and inhibitory brain signals) function and can destabilize stress regulation through the hypothalamic—pituitary—adrenal (HPA) axis (the body's central stress-response system). In addition, reduced glutamate levels have been observed in the medial prefrontal cortex, a region central to mood and executive function. These combined effects—diminished serotonergic signaling, altered GABAergic activity, reduced glutamatergic tone, and HPA dysregulation—explain the heightened risk of depression, anxiety, and stress sensitivity during the perimenopausal transition.

Cognitive Changes in the Perimenopausal Transition

During the perimenopausal transition, many women experience mild but noticeable cognitive changes, most often involving memory, attention, and executive function. The most consistent findings are declines in verbal learning and recall, along with increased distractibility and reduced working memory capacity. Some also report slower processing speed and greater difficulty with multitasking or task organization. Subjective memory complaints—often described as "brain fog"—affect up to 80% of women and typically peak during perimenopause before improving afterward. These changes are linked to fluctuating estrogen levels and alterations in brain regions that support memory and attention, as well as to sleep disruption, mood symptoms, and vasomotor disturbances such as hot flashes. While generally transient and mild, these cognitive effects can meaningfully affect concentration and daily functioning for some women.

Average Age and Duration of the Menopausal Transition

The average age of natural menopause is approximately 51 years, though it commonly occurs between ages 45 and 55. In some regions, including parts of South Asia, menopause tends to occur slightly earlier, around 46 to 47 years. About 5–10% of women experience early menopause before

45, and 1–4% experience premature menopause before 40. The perimenopausal transition—the phase marked by fluctuating hormones and irregular cycles preceding menopause—typically lasts between three and four years but can range from two to eight, and occasionally up to ten. Factors such as smoking are associated with both earlier onset and shorter duration. Overall, the timing and length of the menopausal transition vary widely across individuals and populations.

Genetic Influences on Menopause Timing

Family history is a major determinant of when menopause occurs, with strong genetic patterns observed for both early and late onset. Women whose mothers, sisters, or grandmothers experienced early menopause—before about age 46—are several times more likely to experience the same, with risk particularly high when multiple first-degree relatives are affected. Similarly, a family history of late menopause, after about age 54, also increases the likelihood of delayed onset. Genetic factors explain a large portion of this variation, with heritability estimates ranging from roughly 40% to over 80%, while shared environmental influences play a smaller role.

Metabolic Changes and Elevated Risk of Metabolic Syndrome in Menopause and Perimenopause

Menopause and perimenopause are accompanied by heightened inflammation, altered liver metabolism, and a pronounced redistribution of body fat toward visceral depots. Declining estrogen levels and changing sex hormone balance drive increases in inflammatory markers such as TNF- α , IL-6, and IL-1 β , alongside greater immune activity within adipose tissue. These inflammatory effects are amplified by visceral fat accumulation, which both reflects and reinforces metabolic dysfunction. Estrogen deficiency also disrupts hepatic lipid metabolism, reducing fatty acid oxidation and increasing fat synthesis within the liver, thereby promoting insulin resistance and susceptibility to metabolic liver disease. As fat distribution shifts from subcutaneous to visceral stores, central adiposity becomes more metabolically active and inflammatory, elevating the risk of metabolic syndrome and cardiovascular disease in midlife and beyond.

Menopause substantially elevates the risk of metabolic syndrome compared to premenopause, even when controlling for age and lifestyle factors. The prevalence rises from roughly 10–20% in premenopausal women to between 30% and over 50% after menopause, reflecting a 1.6-to 3.5-fold increase in risk. This heightened vulnerability stems from hormonal changes that promote central obesity, insulin resistance, dyslipidemia (abnormal levels of lipids in the bloodstream), and hypertension—key components of metabolic syndrome. The menopausal transition drives increases in visceral fat and triglyceride levels while lowering protective HDL cholesterol, collectively impairing

glucose regulation and cardiovascular health. Both natural and surgical menopause independently predict higher metabolic risk, which continues to grow with time since menopause.

The Role of Exercise in Restoring Insulin Sensitivity

High-intensity exercise markedly enhances insulin sensitivity through both immediate and long-term effects on glucose transport in skeletal muscle. During and after bouts of high-intensity activity, muscle contractions activate insulin-independent signaling pathways—particularly AMP-activated protein kinase (AMPK)—that trigger the rapid movement of the GLUT4 glucose transporter to the muscle cell membrane, allowing greater glucose uptake. Following exercise, muscle tissue remains more responsive to insulin for several hours due to enhanced GLUT4 translocation at lower insulin concentrations. With regular training, total GLUT4 protein expression increases, further augmenting the muscle's capacity for glucose utilization. As the primary insulin-responsive glucose transporter, GLUT4 serves as the key link between exercise and improved metabolic control, mediating both the acute and adaptive effects of physical activity on insulin sensitivity.

Menopause as Ovarian Failure

Menopause represents the permanent cessation of menstruation caused by ovarian failure—the loss of functional ovarian follicles and reproductive hormone production. As follicular reserves are depleted, the ovaries can no longer produce mature eggs or sustain regular ovulation, resulting in infertility and systemic estrogen deficiency. This hormonal collapse removes the normal negative feedback on the hypothalamic—pituitary—ovarian axis, leading to marked increases in follicle-stimulating hormone (FSH) and luteinizing hormone (LH) alongside undetectable levels of inhibin B and anti-Müllerian hormone (AMH). Clinically, menopause is confirmed after 12 consecutive months without menstruation and is accompanied by symptoms such as hot flashes, urogenital atrophy, mood disturbance, and increased risk of osteoporosis and cardiovascular disease. This endocrine shift reflects a transition to a state of sustained hypoestrogenism and compensatory gonadotropin elevation characteristic of complete ovarian failure.

The 12-Month Amenorrhea Criterion: Health Implications for Early Menopause Treatment

The conventional definition of menopause—requiring 12 consecutive months without menstruation—can delay diagnosis and early intervention, with significant health implications. Because this criterion is retrospective, treatment such as hormone therapy may be postponed

beyond the period when it is most protective, particularly in women under 45 or with premature ovarian insufficiency. This delay increases the risk of osteoporosis, cardiovascular disease, cognitive decline, and overall mortality associated with prolonged estrogen deficiency. The rule also lacks precision for women with irregular cycles, hysterectomy, or hormonal contraceptive use, leading to under-recognition and inconsistent care. Emerging biomarkers, including anti-Müllerian hormone (AMH), offer promise for earlier identification of ovarian failure. Experts now advocate for a more individualized, symptom-based approach to diagnosis and management to prevent avoidable long-term health consequences.

Critical Window for Hormone Therapy (HT): Improvements in Mood

Initiating hormone therapy during perimenopause appears to provide greater improvement in mood symptoms than starting after menopause, though cognitive benefits remain uncertain. Clinical trials and reviews consistently show that estrogen therapy exerts antidepressant effects when begun in perimenopause, aligning with the "critical window" hypothesis that hormonal intervention is most effective when initiated near the onset of ovarian decline. In contrast, treatment started later in postmenopause tends to yield weaker or inconsistent results. Evidence for cognitive enhancement is limited and mixed—major studies such as KEEPS and WHIMS report no significant improvement in memory or executive function regardless of timing. Overall, hormone therapy may help alleviate mood symptoms when initiated during perimenopause, though evidence for cognitive improvement remains limited and inconclusive.

Both hormone therapy and selective serotonin reuptake inhibitors (SSRIs) are used to manage mood symptoms during the menopausal transition, though their efficacy depends on the underlying cause and timing of treatment. In perimenopausal women, estrogen-based HT has been shown to improve mood, particularly when symptoms are linked to hormonal fluctuations or vasomotor instability, whereas SSRIs are more effective for primary depressive disorders. After menopause, the antidepressant effect of HT diminishes, and SSRIs remain the preferred treatment for depression. Some evidence suggests that combining HT with SSRIs may provide additional benefit in women with established depressive illness, though this requires individualized assessment. Overall, SSRIs are recommended as first-line therapy for major depression, while HT may be considered for hormonally mediated mood symptoms, especially when vasomotor or other menopausal symptoms are also present.

Menopausal Arthralgia

Menopause is frequently accompanied by the onset or worsening of arthralgia (joint or body pain), affecting more than half of women during the transition. Estrogen deficiency plays a major role, as declining levels increase inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), heighten oxidative stress, and promote cartilage degradation. These changes impair joint integrity and raise sensitivity in musculoskeletal tissues, often producing pain in the small joints of the hands. Although the association between menopause and arthralgia is strong, causation remains uncertain due to confounding factors such as age, body mass index (BMI), and comorbid health conditions. Hormone replacement therapy (HRT) may relieve symptoms in some women, but findings are inconsistent and long-term safety considerations limit its routine use. Overall, menopausal arthralgia reflects an interaction between hormonal decline, inflammation, and musculoskeletal aging.

References 235-267.

Autonomic and Cardiovascular Adaptations After Ovulation

"So what happens after ovulation is your respiratory rate goes up, your resting heart rate goes up, and your HRV plummets."

After ovulation, physiological markers of autonomic activity shift noticeably: resting heart rate (RHR) and respiratory rate (RR) rise, while heart rate variability (HRV) declines. These coordinated changes indicate a move toward greater sympathetic nervous system activity and reduced parasympathetic (vagal) tone, a pattern consistently observed in both controlled and large-scale studies. The underlying driver is hormonal—progesterone, elevated in the luteal phase, stimulates the respiratory center and increases sympathetic output, while estrogen modulates autonomic balance. Across HRV measures—including RMSSD, SDNN, and LF/HF ratios—the post-ovulatory phase shows lower variability, reflecting this shift toward sympathetic dominance. Overall, the luteal phase is characterized by higher cardiovascular activation and reduced variability, representing a normal physiological adaptation to hormonal fluctuations.

References 268-270.

Sleep Disruption as a Modifiable Risk Factor for Dementia

"that sleep disruption was really gonna increase my chances of dementia"

Extensive research shows that impaired sleep significantly increases the risk of developing dementia. Large-scale cohort studies and meta-analyses consistently find that insomnia, sleep-disordered breathing such as sleep apnea, and abnormal sleep duration—both short and long—are each linked to higher rates of all-cause dementia and Alzheimer's disease. Poor sleep quality, including frequent awakenings and reduced efficiency, is similarly associated with greater cognitive decline. Mechanistically, disrupted sleep contributes to neurodegeneration by impairing the brain's clearance of amyloid- β and tau proteins, increasing inflammation, and disturbing the glymphatic system responsible for waste removal during sleep. Because these pathways are modifiable, improving sleep quality and addressing sleep disorders are increasingly viewed as important strategies for reducing dementia risk.

References 271-273.

The Impact of Chronic Stress on Fertility and Pregnancy Outcomes

"We live in a stressful world and chronic stress itself can impact your fertility, your natural fertility, and IVF success rates (...)

Chronic stress is associated with a higher rate of pregnancy loss."

Chronic stress can interfere with reproductive function and may reduce both natural fertility and the success of in vitro fertilization (IVF, a procedure where eggs are fertilized outside the body), though evidence remains mixed. Persistent activation of the hypothalamic–pituitary–adrenal (HPA) axis—the body's central stress-response system—elevates cortisol and other stress hormones that can disrupt ovulation, impair oocyte (egg cell) quality, and alter endometrial receptivity, the uterus's ability to support embryo implantation. Observational studies suggest that women with higher stress levels often experience longer times to conception, though causation is difficult to confirm. In IVF, elevated physiological markers of stress—such as salivary cortisol or alpha-amylase (an enzyme linked to sympathetic nervous activity)—have been associated with lower pregnancy rates and

poorer embryo quality, particularly during egg retrieval and fertilization. However, results across studies are inconsistent, and some large analyses find no significant relationship once confounding factors are accounted for. While stress management and psychological support can improve emotional well-being and may modestly support fertility, they are not definitive treatments. Overall, chronic stress likely affects fertility through both biological and behavioral mechanisms, though the strength of this effect varies between individuals.

Chronic Stress and Pregnancy Loss

Chronic stress has been linked to a higher risk of pregnancy loss, particularly when experienced during the period around conception or early pregnancy. Prospective studies show that women reporting higher daily stress levels have roughly double the risk of miscarriage compared with those reporting lower stress. Biologically, chronic stress elevates cortisol and disrupts immune and oxidative balance, which can impair implantation and placental function, both critical for sustaining early pregnancy. Women with recurrent pregnancy loss (RPL) often exhibit higher levels of stress, anxiety, and depression, suggesting a feedback loop in which prior loss increases vulnerability to both psychological distress and further complications. While causation remains complex, the association between chronic stress and miscarriage risk is consistent across many studies. Early identification of stress and access to psychological support may help improve outcomes and reduce emotional distress in women at risk.

References 274-280.

Ovarian Reserve Decline and Factors Affecting Egg Count

"So from being a five month baby to birth, your egg count goes from six to 7 million to one to 2 million. Millions of eggs lost before you're even born (...) you only ovulate around 400 eggs over the course of your reproductive lifespan (...)

Because there's so many other variables which impact your ability to get pregnant or your egg count. Endometriosis decreases your egg count, right? (...) Smoking, chemo, radiation, smoking marijuana, any abdominal surgery ..."

The number of oocytes, or egg cells, declines sharply from fetal life to menopause, with the greatest losses occurring before birth and during early development. Oocyte count peaks at about 6–7 million around 20 weeks of gestation, but only 1–2 million remain at birth due to widespread programmed cell death known as atresia. By puberty, the ovarian reserve falls to roughly 300,000–400,000, continuing to diminish across adulthood to about 25,000 by age 37–38 and fewer than 1,000 at menopause. Across the reproductive lifespan, only 400–500 eggs are actually ovulated; all others undergo atresia. This natural depletion reflects both intrinsic cellular aging processes and external influences such as oxidative stress and inflammation. The progressive loss of oocytes underlies the gradual decline in fertility and the eventual cessation of ovarian function at menopause.

Factors That Reduce Ovarian Reserve

A wide range of biological, medical, and environmental factors can reduce a woman's ovarian reserve—the total number of remaining egg cells (oocytes) in the ovaries. Age is the strongest determinant, as both egg count and quality decline progressively, especially after age 35. Genetic variants such as mutations in FMR1 or BRCA1/2 can predispose to early depletion, while conditions like endometriosis, autoimmune disorders, or ovarian surgery may directly damage ovarian tissue. Exposure to chemotherapy, radiation, or environmental toxins can accelerate follicle loss through oxidative stress and DNA damage. Lifestyle factors—including smoking, excessive alcohol use, poor nutrition, and obesity—further compromise ovarian function, as can chronic stress, disrupted sleep, or shift work, which alter hormonal regulation. Endocrine and metabolic disorders such as thyroid disease or polycystic ovary syndrome (PCOS) also contribute to dysregulated ovarian signaling. Overall, ovarian reserve reflects a complex interaction of genetic, hormonal, and environmental influences, many of which are modifiable through medical management and lifestyle intervention.

Effects of Marijuana on Egg Count

Animal research suggests that exposure to tetrahydrocannabinol (THC), the primary psychoactive compound in marijuana, can significantly reduce ovarian reserve, but human evidence remains limited and inconclusive. In female mice, THC exposure during adolescence or fetal development leads to marked losses of primordial follicles and overall ovarian follicles, indicating lasting depletion of egg reserves through DNA damage and oocyte apoptosis (programmed cell death). In humans, no studies have conclusively demonstrated a reduction in egg count linked to marijuana use, though some clinical findings suggest ovulatory irregularities and possible effects on

oocyte quality. The proposed mechanism involves disruption of the endocannabinoid system, which plays a key role in folliculogenesis (egg maturation) and hormone regulation. Cannabis use has also been associated with epigenetic alterations—changes in DNA methylation patterns in ovarian cells—that could influence reproductive function, though their clinical significance is unclear. Overall, while animal evidence indicates biological plausibility, current human data do not confirm that marijuana use reduces ovarian reserve, underscoring the need for further research.

References 281-287.

Age-Related Decline in Natural Fertility

"So if you are 30, your odds of getting pregnant monthly (...) it's going to be at best 20% per month. When you're in your twenties, it's a little bit higher. It can get up to 25% per month (...) at age 35, if you're trying to get pregnant, it's going to be 10 to 12% per month. Odds of getting pregnant at age 38, it's gonna be 5% per month. At age 40 it's gonna be 3%."

The likelihood of natural conception declines steadily with age, dropping from about 20–25% per month in the early twenties to below 5% per month by the early forties. Peak fertility occurs in the early to mid-twenties, after which fecundability—the probability of conceiving per menstrual cycle—gradually decreases, with a sharper decline after age 35. Average monthly conception probabilities are roughly 18–22% for women aged 25–29, 15–20% for ages 30–34, 8–15% for ages 35–39, and 3–8% for ages 40–44. Over a 12-month period of trying to conceive, about 80–85% of women under 30 will achieve pregnancy compared to 55–66% of women aged 40 or older. Women who have previously given birth may have slightly higher conception rates due to "proven fertility" factors. Overall, age remains the most influential determinant of natural fertility, with both egg quality and quantity declining progressively from the mid-thirties onward.

References 288-290.

Effects of Male Marijuana Use on Sperm Quality and Pregnancy Outcomes

"Marijuana use works at the brain to prevent those FSH and LH signals, which are crucial to tell your testicles to make sperm, and they also impact inflammatory environment. So sperm are not as modal, they're not shaped as well. The DNA inside their heads is more fragmented (...) men who use marijuana, their partners have a higher rate of pregnancy loss."

Marijuana use, particularly exposure to tetrahydrocannabinol (THC), has been linked to impaired male fertility through its effects on sperm quality, testicular function, and hormonal regulation. Studies consistently show reductions in sperm count, motility, and morphology, along with increased DNA fragmentation and altered mitochondrial activity, which can compromise fertilization potential. THC acts on the endocannabinoid receptors in the brain and testes, disrupting luteinizing hormone (LH) and follicle-stimulating hormone (FSH) signaling—key regulators of testosterone production and spermatogenesis. Chronic or heavy use is associated with lower testosterone levels, testicular atrophy, and reduced sperm viability, though some recovery may occur after cessation. Animal and cell studies also show oxidative stress and epigenetic alterations in sperm that could affect embryo development. While evidence in humans is limited by confounding factors such as tobacco or alcohol use, the overall body of research supports an association between marijuana use and reduced male reproductive potential, warranting caution among men attempting conception.

Male Marijuana Use and Pregnancy Loss

Frequent male marijuana use, particularly at least once per week during the preconception period, has been associated with a higher risk of miscarriage in partners, even when the female partner does not use marijuana. Large prospective studies show roughly a twofold increase in spontaneous abortion risk among couples where the male partner uses marijuana regularly, with the strongest associations seen for early pregnancy loss (<8 weeks) and in men aged 35 years or older. The proposed mechanism involves sperm DNA fragmentation and chromosomal abnormalities, both of which are more common in frequent users and are known contributors to early embryonic loss. Additional evidence suggests that paternal exposure to marijuana or tobacco may elevate miscarriage risk through similar oxidative and genetic effects. While a few small studies in assisted reproduction settings have produced conflicting findings, the overall body of evidence supports an

association between frequent male marijuana use and increased pregnancy loss risk, warranting caution for men trying to conceive.

References 291-295.

Therapeutic Applications of Hormone and Vaginal Estrogen Therapy in Menopause

"even in menopause, only 4% of women have chosen or have been educated on the pros and cons of hormone optimization (...) So 2023, they did a study in the US (...) when you look at FDA prescriptions, only 4% of eligible women, meaning no risk factors, right age, are utilizing or going to get their prescriptions filled (...)

So when we look at the side effect profile (...) estrogen, you can have headaches, you can have irregular bleeding (...)

there's several options. We have creams, we have pills. There's a ring specifically designed just for that. So we have different methods of getting estrogen into the vagina. There's also something called prasterone, which is DHEA, basically, which is a prehormone that the vagina miraculously will convert to estrogen and testosterone (...) vaginal estrogen will help prevent UTIs, chronic UTIs, and it will help support the pelvic floor and the uterus from prolapsing (...)

And here's another bonus. It is such low dose, it is not systemic (...)

in perimenopause, as estrogen wanes, it affects all tissues. And there is an entity called the genital urinary syndrome of menopause where the vagina will actually atrophy and all the external soft tissues that are usually used to engorging will become dry (...)"

Prevalence of Hormone Therapy Use

Current evidence shows that only about 4–5% of menopausal or perimenopausal women in the U.S. use hormone therapy, marking a sharp decline since the late 1990s. Usage dropped from roughly 27% in 1999 to under 5% by 2020, largely following safety concerns raised by the Women's Health Initiative. Among women aged 52–65, the rate fell from about 35% to 4.5%, while prevalence remains around 9% in younger women and 4% in those over 65. Recent ambulatory care data indicate hormone therapy is prescribed in fewer than 4% of medical visits by midlife and older

women. Uptake is slightly higher in specific subgroups, such as active-duty service members, but remains low overall. Disparities persist by ethnicity, education, and health status, with lower use among Hispanic and chronically ill women. These trends reflect evolving perceptions of risk and benefit in menopausal care.

Side Effects of Estrogen-Based hormone Replacement Therapy

Estrogen-based hormone replacement therapy (HRT) is widely used to alleviate menopausal and perimenopausal symptoms but is associated with a range of side effects. The most frequently reported adverse effects include breast tenderness or swelling, nausea, bloating, headaches, leg cramps, and irregular vaginal bleeding or spotting. Mood fluctuations such as irritability or mild depression are also occasionally observed. The likelihood and severity of these effects vary depending on the formulation and route of administration—oral, transdermal, or vaginal. More serious but less common risks include venous thromboembolism, stroke, gallbladder disease, hypertension, and certain cancers, notably breast cancer with combined estrogen-progestin therapy and endometrial cancer with unopposed estrogen in women who have a uterus. Overall, while estrogen-based HRT is effective in managing menopausal symptoms, its use requires individualized risk assessment and ongoing clinical monitoring.

Local (Vaginal) Estrogen Therapy

Local (vaginal) estrogen therapy is considered the gold standard for treating moderate to severe genitourinary syndrome of menopause (GSM), offering several effective and generally safe delivery options. Common formulations include vaginal creams containing estradiol, conjugated estrogens, or estriol; vaginal tablets with low-dose estradiol or estriol; and vaginal rings that release estradiol continuously over several months. Less commonly, capsules, pessaries, ovules, and gels are available in certain regions as alternative delivery routes. All these methods effectively relieve GSM symptoms by restoring local estrogenic stimulation to vaginal and urinary tissues. Because low-dose vaginal estrogen produces minimal systemic absorption, it is typically regarded as safe for most women, including with long-term use, although caution is recommended for those with hormone-sensitive cancers. The choice of therapy should ultimately be guided by patient comfort, convenience, and individual safety considerations.

Vaginal Estrogen Therapy for Urinary Tract Infections

Extensive clinical evidence supports the use of local vaginal estrogen therapy to reduce the risk of recurrent urinary tract infections (UTIs) in postmenopausal women. Meta-analyses of randomized controlled trials indicate that vaginal estrogen can lower recurrence rates by more than half, with one study reporting a decline from 5.9 to 0.5 infections per patient-year following intravaginal estriol treatment. Observational data from a cohort of over 5,600 women similarly showed a 51.9% reduction in UTI frequency after initiation of vaginal estrogen. The protective effect arises from estrogen's ability to restore the vaginal and lower urinary tract mucosa, normalize pH, and encourage the regrowth of protective lactobacilli, thereby inhibiting pathogenic colonization. Estrogen also influences local immune and inflammatory responses, further enhancing resistance to infection. With minimal systemic absorption and a favorable safety profile, local vaginal estrogen is widely recommended in clinical guidelines as an effective, non-antibiotic preventive strategy for recurrent UTIs in postmenopausal women.

Vaginal Estrogen and Pelvic Floor Support

Current evidence does not support the use of vaginal estrogen therapy for preventing or treating pelvic organ prolapse or for improving pelvic floor support in postmenopausal women. Multiple randomized controlled trials and systematic reviews have shown no significant difference in prolapse progression, recurrence, or symptom improvement between vaginal estrogen users and placebo groups, including after prolapse repair surgery. While local estrogen can enhance vaginal wall thickness, collagen production, and epithelial health, these biological effects have not translated into measurable clinical benefits for prolapse severity or pelvic floor integrity. Vaginal estrogen may serve a supportive role when used alongside pessaries or surgical interventions by reducing atrophic or irritative symptoms, but it does not reduce prolapse risk or recurrence. Overall, its therapeutic value lies in alleviating genitourinary symptoms rather than preventing or correcting pelvic organ prolapse.

Genitourinary Syndrome of Menopause (GSM)

Genitourinary Syndrome of Menopause (GSM) is a chronic and progressive condition that arises from reduced estrogen levels during or after menopause, affecting the vulva, vagina, pelvic floor, and lower urinary tract. The term was introduced in 2014 to replace "vulvovaginal atrophy," reflecting a broader understanding of the condition's systemic nature. GSM presents with persistent symptoms such as vaginal dryness, burning, irritation, itching, pain during intercourse, diminished lubrication, urinary urgency or frequency, painful urination, and recurrent urinary tract infections.

These manifestations often lead to sexual dysfunction and can substantially affect quality of life, mood, and interpersonal relationships. Diagnosis is clinical, based on characteristic symptoms and examination findings, with prevalence estimates ranging widely from 27% to 84% depending on study criteria. As a highly prevalent yet frequently underdiagnosed disorder, GSM requires timely recognition and individualized management to mitigate its physical and psychological impact.

Prasterone (DHEA) for Genitourinary Syndrome of Menopause

Prasterone, or dehydroepiandrosterone (DHEA), is a synthetic version of a naturally occurring steroid hormone approved for the treatment of moderate to severe genitourinary syndrome of menopause (GSM). Administered as a 6.5 mg daily intravaginal insert, prasterone functions as an inactive precursor that is locally converted within vaginal tissues into estrogens and androgens, thereby activating both hormone receptor types without significant systemic absorption. Clinical and real-world studies consistently show that prasterone alleviates GSM-related symptoms such as vaginal dryness, burning, irritation, dyspareunia, and urinary complaints. Improvements in vaginal tissue health, pH, lubrication, and sexual function are typically observed within one to three months of use. The therapy is well tolerated, with mild vaginal discharge being the most common side effect, and serum estrogen levels generally remain within postmenopausal ranges. Because of its minimal systemic exposure, prasterone represents a safe and effective alternative for women who cannot or prefer not to use conventional estrogen-based therapies, including some breast cancer survivors on aromatase inhibitors.

Systemic Absorption and Safety Profile of Vaginal Estrogen

Vaginal estrogen therapy is primarily intended for local action, though some systemic absorption occurs depending on the dose, formulation, and method of application. With low- and ultra-low-dose products—typically containing 4–10 µg of estradiol—serum estradiol concentrations generally remain within or near postmenopausal levels, averaging between 3.6 and 14.8 pg/mL. Slightly higher doses, such as 25 µg formulations, may raise levels to approximately 7.1–22.7 pg/mL but still well below premenopausal concentrations. In contrast, older high-dose creams (0.5 mg or more) can produce substantial systemic absorption, occasionally elevating estradiol to premenopausal ranges. Absorption also tends to be higher at treatment onset, when the vaginal epithelium is thin, and with applications placed deeper in the vagina. Overall, low-dose vaginal estrogens have minimal systemic effects and are considered safe for most women, while higher-dose

or cream-based formulations warrant caution in those with contraindications to systemic estrogen exposure.

References 296-312.

References

- 1. <u>Debbink, M., Tuuli, M., Geller, A., Salganicoff, A., Burke, S., & Secord, A. (2025). A New Way Forward for Women's Health Research at the National Institutes of Health: A Roadmap From the National Academies of Sciences, Engineering, and Medicine's Consensus Report.. Obstetrics and gynecology.</u>
 - 2. <u>Barcelona, V. (2024). National Academies Recommendations for Transformative Change in</u>
 Women's Health Research at the National Institutes of Health. Nursing Research, 74, 87 90.
 - 3. Mirin, A. (2020). Gender Disparity in the Funding of Diseases by the U.S. National Institutes of Health. Journal of Women's Health, 30, 956 963.
 - 4. Rice, L., Cedars, M., Sadovsky, Y., Siddiqui, N., Teal, S., Wright, J., Zorbas, A., & Del Carmen, M. (2020). Increasing NIH Funding for Academic Departments of Obstetrics and Gynecology: A Call to Action.. American journal of obstetrics and gynecology.
 - 5. Kuehn, B. (2022). Lowest US Life Expectancy Since 1996 Linked to COVID-19.. JAMA, 328 14, 1389.
 - 6. Thornton, J. (2019). WHO report shows that women outlive men worldwide. BMJ, 365.
 - 7. Hossin, M. (2021). The male disadvantage in life expectancy: can we close the gender gap?. International Health, 13, 482 484.
 - 8. Schünemann, J., Strulik, H., & Trimborn, T. (2017). The gender gap in mortality: How much is explained by behavior? Journal of health economics, 54, 79-90.
 - Otten, D., Tibubos, A., Schomerus, G., Brähler, E., Binder, H., Kruse, J., Ladwig, K., Wild, P.,
 Grabe, H., & Beutel, M. (2021). Similarities and Differences of Mental Health in Women
 andMen: A Systematic Review of Findings in Three Large German Cohorts. Frontiers in Public
 Health, 9.
 - 10. Albert, P. (2015). Why is depression more prevalent in women?. Journal of psychiatry & neuroscience: JPN, 40 4, 219-21.

- 11. <u>La Torre, J., Vilagut, G., Ronaldson, A., Serrano-Blanco, A., Martín, V., Peters, M., Valderas, J., Dregan, A., & Alonso, J. (2021)</u>. <u>Prevalence and variability of current depressive disorder in 27 European countries: a population-based study</u>. The Lancet. <u>Public Health, 6, e729 e738</u>.
- 12. Reilev, M., Lundby, C., Jensen, J., Larsen, S., Hoffmann, H., & Pottegård, A. (2019). Morbidity and mortality among older people admitted to nursing home.. Age and ageing.
- 13. Beam, C., Kaneshiro, C., Jang, J., Reynolds, C., Pedersen, N., & Gatz, M. (2018). Differences

 Between Women and Men in Incidence Rates of Dementia and Alzheimer's Disease. Journal of Alzheimer's Disease, 64, 1077 1083.
- 14. Li, X., Feng, X., Sun, X., Hou, N., Han, F., & Liu, Y. (2022). Global, regional, and national burden of Alzheimer's disease and other dementias, 1990–2019. Frontiers in Aging Neuroscience, 14.
- 15. Qiu, Y., Li, G., Wang, X., Zheng, L., Wang, C., Wang, C., & Chen, L. (2021). Prevalence of cognitive frailty among community-dwelling older adults: A systematic review and meta-analysis.. International journal of nursing studies, 125, 104112.
- Agarwal, S., Chapron, C., Giudice, L., Laufer, M., Leyland, N., Missmer, S., Singh, S., & Taylor,
 H. (2019). Clinical diagnosis of endometriosis: a call to action.. American journal of obstetrics
 and gynecology, 220 4, 354.e1-354.e12.
- 17. Surrey, E., Soliman, A., Trenz, H., Blauer-Peterson, C., & Sluis, A. (2020). Impact of Endometriosis Diagnostic Delays on Healthcare Resource Utilization and Costs. Advances in Therapy, 37, 1087 1099.
- 18. <u>De Corte, P., Klinghardt, M., Von Stockum, S., & Heinemann, K. (2024). Time to Diagnose Endometriosis: Current Status, Challenges and Regional Characteristics—A Systematic Literature Review. Bjog, 132, 118 130.</u>
- 19. Ghai, V., Jan, H., Shakir, F., Haines, P., & Kent, A. (2019). Diagnostic delay for superficial and deep endometriosis in the United Kingdom. Journal of Obstetrics and Gynaecology, 40, 83-89.

- 20. Pino, I., Belloni, G., Barbera, V., Solima, E., Radice, D., Angioni, S., Arena, S., Bergamini, V., Candiani, M., Maiorana, A., Mattei, A., Muzii, L., Pagliardini, L., Porpora, M., Remorgida, V., Seracchioli, R., Vercellini, P., Zullo, F., Zupi, E., & Vignali, M. (2022). "Better late than never but never late is better", especially in young women. A multicenter Italian study on diagnostic delay for symptomatic endometriosis. The European Journal of Contraception & Reproductive Health Care, 28, 10 16.
- 21. Tewhaiti-Smith, J., Semprini, A., Bush, D., Anderson, A., Eathorne, A., Johnson, N., Girling, J., East, M., Marriott, J., & Armour, M. (2022). An Aotearoa New Zealand survey of the impact and diagnostic delay for endometriosis and chronic pelvic pain. Scientific Reports, 12.
- 22. Jc, B. (1993). Inclusion of women in clinical trials--policies for population subgroups.. The New England journal of medicine, 329 4, 288-92.
- 23. Geller, S., Koch, A., Roesch, P., Filut, A., Hallgren, E., & Carnes, M. (2017). The More Things
 Change, the More They Stay the Same: A Study to Evaluate Compliance With Inclusion and
 Assessment of Women and Minorities in Randomized Controlled Trials. Academic Medicine,
 93, 630–635.
- 24. Mazure, C., & Jones, D. (2015). Twenty years and still counting: including women as participants and studying sex and gender in biomedical research. BMC Women's Health, 15.
- 25. Sosinsky, A., Rich-Edwards, J., Wiley, A., Wright, K., Spagnolo, P., & Joffe, H. (2022).
 Enrollment of female participants in United States drug and device phase 1-3 clinical trials
 between 2016 and 2019.. Contemporary clinical trials, 106718...
- 26. Perera, N., Bellomo, T., Schmidt, W., Litt, H., Shyu, M., Stavins, M., Wang, M., Bell, A., Saleki, M., Wolf, K., Ionescu, R., Tao, J., Ji, S., O'Keefe, R., Pun, M., Takasugi, J., Steinberg, J., Go, R., Turner, B., & Mahipal, A. (2023). Analysis of Female Participant Representation in Registered Oncology Clinical Trials in the United States from 2008 to 2020. The Oncologist, 28, 510 519.
- 27. <u>Gunn, C., Pankowska, M., Harris, M., Helsing, E., Battaglia, T., & Bagley, S. (2022). The Representation of Females in Clinical Trials for Substance Use Disorder Conducted in the United States (2010 2019).</u> Addiction.
- 28. Jin, X., Chandramouli, C., Allocco, B., Gong, E., Lam, C., & Yan, L. (2020). Women's Participation in Cardiovascular Clinical Trials From 2010 to 2017. , 141, 540 548.

- 29. Scott, P., Unger, E., Jenkins, M., Southworth, M., McDowell, T., Geller, R., Elahi, M., Temple, R., & Woodcock, J. (2018). Participation of Women in Clinical Trials Supporting FDA Approval of Cardiovascular Drugs. Journal of the American College of Cardiology, 71 18, 1960-1969.
- 30. Nuzzo, J. (2023). Sex differences in skeletal muscle fiber types: A meta-analysis. Clinical Anatomy, 37, 81 91.
- 31. Fournier, G., Bernard, C., Cievet-Bonfils, M., Kenney, R., Pingon, M., Sappey-Marinier, E., Chazaud, B., Gondin, J., & Servien, E. (2022). Sex differences in semitendinosus muscle fiber-type composition. Scandinavian Journal of Medicine & Science in Sports, 32, 720 727.
- 32. <u>Dominelli, P., Molgat-Seon, Y., & Sheel, A. (2019). Sex Differences in the Pulmonary System</u>
 <u>Influence the Integrative Response to Exercise.. Exercise and Sport Sciences Reviews.</u>
- 33. <u>Dominelli, P., & Molgat-Seon, Y. (2022). Sex, gender and the pulmonary physiology of exercise. European Respiratory Review, 31.</u>
- 34. Martin, T., & Leinwand, L. (2024). Hearts apart: sex differences in cardiac remodeling in health and disease. The Journal of Clinical Investigation, 134.
- 35. Ji, H., Kwan, A., Chen, M., Ouyang, D., Ebinger, J., Bell, S., Niiranen, T., Bello, N., & Cheng, S. (2022). Sex Differences in Myocardial and Vascular Aging. Circulation Research, 130, 566 577.
- 36. <u>Murphy, W. (2014). The sex difference in haemoglobin levels in adults mechanisms, causes, and consequences.</u> <u>Blood reviews, 28 2, 41-7.</u>
- 37. Rushton, D., Dover, R., Sainsbury, A., Norris, M., Gilkes, J., & Ramsay, I. (2001). Why should women have lower reference limits for haemoglobin and ferritin concentrations than men?.

 BMJ: British Medical Journal. 322, 1355 1357.
- 38. Joakimsen, O., Bønaa, K., Stensland-Bugge, E., & Jacobsen, B. (1999). Age and sex differences in the distribution and ultrasound morphology of carotid atherosclerosis: the Tromsø Study.. Arteriosclerosis, thrombosis, and vascular biology, 19 12, 3007-13.
- 39. Yerly, A., Van Der Vorst, E., Baumgartner, I., Bernhard, S., Schindewolf, M., & Döring, Y. (2022). Sex-specific and hormone-related differences in vascular remodelling in atherosclerosis. European Journal of Clinical Investigation, 53.

- 40. Van Rosendael, S., Bax, A., Lin, F., Achenbach, S., Andreini, D., Budoff, M., Cademartiri, F., Callister, T., Chinnaiyan, K., Chow, B., Cury, R., Delago, A., Feuchtner, G., Hadamitzky, M., Hausleiter, J., Kaufmann, P., Kim, Y., Leipsic, J., Maffei, E., Marques, H., De Araújo Gonçalves, P., Pontone, G., Raff, G., Rubinshtein, R., Villines, T., Chang, H., Berman, D., Min, J., Bax, J., Shaw, L., & Van Rosendael, A. (2023). Sex and age-specific interactions of coronary atherosclerotic plaque onset and prognosis from coronary computed tomography. European Heart Journal Cardiovascular Imaging, 24, 1180 1189.
- 41. Man, J., Beckman, J., & Jaffe, I. (2020). Sex as a Biological Variable in Atherosclerosis. , 126. 1297 1319.
- 42. Schulte, K., & Mayrovitz, H. (2023). Myocardial Infarction Signs and Symptoms: Females vs. Males. Cureus, 15.
- 43. Van Oosterhout, R., De Boer, A., Maas, A., Rutten, F., Bots, M., & Peters, S. (2020). Sex

 Differences in Symptom Presentation in Acute Coronary Syndromes: A Systematic Review
 and Meta-analysis. Journal of the American Heart Association: Cardiovascular and
 Cerebrovascular Disease. 9.
- 44. Patel, H., Rosengren, A., & Ekman, I. (2004). Symptoms in acute coronary syndromes: does sex make a difference?. American heart journal, 148 1, 27-33.
- 45. Karsenty, G. (2020). The facts of the matter: What is a hormone?. PLoS Genetics, 16.
- 46. Lai, D., & Mueller, J. (2025). Understanding the biochemistry of hormones message in a bottle.. Essays in biochemistry, 69 1, 1-18.
- 47. <u>Castillo-Armengol, J., Fajas, L., & Lopez-Mejia, I. (2019). Inter-organ communication: a gatekeeper for metabolic health. EMBO Reports, 20.</u>
- 48. Herrlich, A., Kefaloyianni, E., & Rose-John, S. (2022). Mechanisms of interorgan crosstalk in health and disease. FEBS Letters, 596.
- 49. Rehfeld, J. (2021). Cholecystokinin and the hormone concept. Endocrine Connections, 10, R139 R150.
- 50. Mendoza, A., & Hollenberg, A. (2017). New insights into thyroid hormone action ★.

 Pharmacology & Therapeutics, 173, 135–145.

51. Dehkhoda, F., Lee, C., Medina, J., & Brooks, A. (2018). The Growth Hormone Receptor:

Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Frontiers in Endocrinology, 9.

- 52. Reed, B., & Carr, B. (2015). The Normal Menstrual Cycle and the Control of Ovulation.
- 53. Attia, G., Alharbi, O., & Aljohani, R. (2023). The Impact of Irregular Menstruation on Health: A Review of the Literature. Cureus, 15.
- 54. Wang, Y., Arvizu, M., Rich-Edwards, J., Stuart, J., Manson, J., Missmer, S., Pan, A., & Chavarro, J. (2020). Menstrual cycle regularity and length across the reproductive lifespan and risk of premature mortality: prospective cohort study. The BMJ, 371.
- 55. Wang, Y., Stuart, J., Rich-Edwards, J., Missmer, S., Rexrode, K., Farland, L., Mukamal, K., Nelson, S., Solomon, C., Fraser, A., & Chavarro, J. (2022). Menstrual Cycle Regularity and Length Across the Reproductive Lifespan and Risk of Cardiovascular Disease. JAMA Network Open, 5.
- 56. Bull, J., Rowland, S., Scherwitzl, E., Scherwitzl, R., Danielsson, K., & Harper, J. (2019).

 Real-world menstrual cycle characteristics of more than 600,000 menstrual cycles. NPJ Digital Medicine, 2.
- 57. Clark, Z., Karl, K., Ruebel, M., Latham, K., & Ireland, J. (2022). Excessive follicle-stimulating hormone during ovarian stimulation of cattle may induce premature luteinization of most ovulatory-size follicles. Biology of Reproduction, 106, 968 978.
- 58. Bosch, E., Alviggi, C., Lispi, M., Conforti, A., Hanyaloglu, A., Chuderland, D., Simoni, M., Raine-Fenning, N., Crépieux, P., Kol, S., Rochira, V., D'Hooghe, T., & Humaidan, P. (2021). Reduced FSH and LH action: implications for medically assisted reproduction. Human Reproduction (Oxford, England), 36, 1469 - 1480.
- 59. <u>Das, N., & Kumar, T. (2018). Molecular regulation of follicle-stimulating hormone synthesis.</u> secretion and action.. <u>Journal of molecular endocrinology, 60 3, R131-R155.</u>
- 60. Montserrat, N., González, A., Méndez, E., Piferrer, F., & Planas, J. (2004). Effects of follicle stimulating hormone on estradiol-17 beta production and P-450 aromatase (CYP19) activity and mRNA expression in brown trout vitellogenic ovarian follicles in vitro.. General and comparative endocrinology, 137 2, 123-31.
- 61. Hotchkiss, J., Atkinson, L., & Knobil, E. (1971). Time course of serum estrogen and luteinizing hormone (LH) concentrations during the menstrual cycle of the rhesus monkey..

 Endocrinology, 89 1, 177-83.

- 62. <u>Kauffman, A. (2022). Neuroendocrine mechanisms underlying estrogen positive feedback</u> and the LH surge. Frontiers in Neuroscience, 16.
- 63. Moenter, S., Caraty, A., & Karsch, F. (1990). The estradiol-induced surge of gonadotropin-releasing hormone in the ewe.. Endocrinology, 127 3, 1375-84.
- 64. Sinchak, K., Mohr, M., & Micevych, P. (2020). Hypothalamic Astrocyte Development and Physiology for Neuroprogesterone Induction of the Luteinizing Hormone Surge. Frontiers in Endocrinology, 11.
- 65. Orvieto, R., Morag, N., Rubin, E., & Nahum, R. (2025). Defining the LH surge in natural cycle frozen-thawed embryo transfer: the role of LH, estradiol, and progesterone. Journal of Ovarian Research, 18.
- 66. Anckaert, E., Jank, A., Petzold, J., Rohsmann, F., Paris, R., Renggli, M., Schönfeld, K., Schiettecatte, J., & Kriner, M. (2021). Extensive monitoring of the natural menstrual cycle using the serum biomarkers estradiol, luteinizing hormone and progesterone. Practical Laboratory Medicine, 25.
- 67. Irani, M., Robles, A., Gunnala, V., Reichman, D., & Rosenwaks, Z. (2016). Optimal parameters for determining the LH surge in natural cycle frozen-thawed embryo transfers. Journal of Ovarian Research, 10.
- 68. Dozortsev, D., & Diamond, M. (2020). Luteinizing hormone-independent rise of progesterone as the physiological trigger of the ovulatory gonadotropins surge in the human.. Fertility and sterility, 114 2, 191-199.
- 69. Rossmanith, W., Laughlin, G., Mortola, J., Johnson, M., Veldhuis, J., & Yen, S. (1990). Pulsatile cosecretion of estradiol and progesterone by the midluteal phase corpus luteum: temporal link to luteinizing hormone pulses.. The Journal of clinical endocrinology and metabolism, 70 4, 990-5.
- Przygrodzka, E., Plewes, M., & Davis, J. (2021). Luteinizing Hormone Regulation of Inter-Organelle Communication and Fate of the Corpus Luteum. International Journal of Molecular Sciences, 22.

- 71. Plewes, M., Hou, X., Talbott, H., Zhang, P., Wood, J., Cupp, A., & Davis, J. (2020). Luteinizing hormone regulates the phosphorylation and localization of the mitochondrial effector dynamin-related protein-1 (DRP1) and steroidogenesis in the bovine corpus luteum. The FASEB Journal, 34, 5299 5316.
- 72. Solano, M., & Arck, P. (2020). Steroids, Pregnancy and Fetal Development. Frontiers in Immunology, 10.
- 73. <u>Wu, S., Li, R., & DeMayo, F. (2018)</u>. <u>Progesterone Receptor Regulation of Uterine Adaptation</u> for Pregnancy. <u>Trends in Endocrinology & Metabolism</u>. 29, 481-491.
- 74. Shah, N., Lai, P., Imami, N., & Johnson, M. (2019). Progesterone-Related Immune Modulation of Pregnancy and Labor. Frontiers in Endocrinology, 10.
- 75. <u>Bulletti, C., Bulletti, F., Sciorio, R., & Guido, M. (2022)</u>. <u>Progesterone: The Key Factor of the Beginning of Life. International Journal of Molecular Sciences, 23.</u>
- 76. Kolátorová, L., Vítků, J., Suchopár, J., Hill, M., & Pařízek, A. (2022). Progesterone: A Steroid with Wide Range of Effects in Physiology as Well as Human Medicine. International Journal of Molecular Sciences. 23.
- 77. Najmabadi, S., Schliep, K., Simonsen, S., Porucznik, C., Egger, M., & Stanford, J. (2020).

 Menstrual bleeding, cycle length, and follicular and luteal phase lengths in women without known subfertility: A pooled analysis of three cohorts.. Paediatric and perinatal epidemiology.
- 78. Moon, J., & Jang, H. (2022). Gestational Diabetes Mellitus: Diagnostic Approaches and Maternal-Offspring Complications. Diabetes & Metabolism Journal, 46, 3 14.
- 79. Wendland, E., Torloni, M., Falavigna, M., Trujillo, J., Dode, M., Campos, M., Duncan, B., & Schmidt, M. (2012). Gestational diabetes and pregnancy outcomes a systematic review of the World Health Organization (WHO) and the International Association of Diabetes in Pregnancy Study Groups (IADPSG) diagnostic criteria. BMC Pregnancy and Childbirth, 12, 23 23.
- 80. Behboudi-Gandevani, S., Amiri, M., Yarandi, B., & Tehrani, R. (2019). The impact of diagnostic criteria for gestational diabetes on its prevalence: a systematic review and meta-analysis.

 Diabetology & Metabolic Syndrome, 11.

- 81. Plows, J., Stanley, J., Baker, P., Reynolds, C., & Vickers, M. (2018). The Pathophysiology of Gestational Diabetes Mellitus. International Journal of Molecular Sciences, 19.
- 82. Johns, E., Denison, F., Norman, J., & Reynolds, R. (2018). Gestational Diabetes Mellitus:

 Mechanisms, Treatment, and Complications. Trends in Endocrinology & Metabolism, 29,
 743-754.
- 83. Alejandro, E., Mamerto, T., Chung, G., Villavieja, A., Gaus, N., Morgan, E., & Pineda-Cortel, M. (2020). Gestational Diabetes Mellitus: A Harbinger of the Vicious Cycle of Diabetes.

 International Journal of Molecular Sciences. 21.
- 84. Sweeting, A., Wong, J., Murphy, H., & Ross, G. (2022). A Clinical Update on Gestational Diabetes Mellitus. Endocrine Reviews, 43, 763 793.
- 85. Dennison, R., Chen, E., Green, M., Legard, C., Kotecha, D., Farmer, G., Sharp, S., Ward, R., Usher-Smith, J., & Griffin, S. (2020). The absolute and relative risk of type 2 diabetes after gestational diabetes: A systematic review and meta-analysis of 129 studies.. Diabetes research and clinical practice, 108625.
- 86. <u>Vounzoulaki, E., Khunti, K., Abner, S., Tan, B., Davies, M., & Gillies, C. (2020). Progression to type 2 diabetes in women with a known history of gestational diabetes: systematic review and meta-analysis. The BMJ, 369.</u>
- 87. Li, Z., Cheng, Y., Wang, D., Chen, H., Chen, H., Ming, W., & Wang, Z. (2020). Incidence Rate of Type 2 Diabetes Mellitus after Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis of 170,139 Women. Journal of Diabetes Research, 2020.
- 88. Farland, L., Wang, Y., Gaskins, A., Rich-Edwards, J., Wang, S., Magnus, M., Chavarro, J., Rexrode, K., & Missmer, S. (2023). Infertility and Risk of Cardiovascular Disease: A Prospective Cohort Study.. Journal of the American Heart Association, e027755.
- 89. O'Kelly, A., Michos, E., Shufelt, C., Vermunt, J., Minissian, M., Quesada, O., Smith, G., Rich-Edwards, J., Garovic, V., Khoudary, S., & Honigberg, M. (2022). Pregnancy and Reproductive Risk Factors for Cardiovascular Disease in Women.. Circulation research, 130 4, 652-672.
- 90. Parikh, N., Cnattingius, S., Mittleman, M., Ludvigsson, J., & Ingelsson, E. (2012). Subfertility and risk of later life maternal cardiovascular disease.. Human reproduction, 27 2, 568-75.

- 91. Awlaqi, A., Alkhayat, K., & Hammadeh, M. (2016). Metabolic Syndrome and Infertility in Women. International Journal of Women's Health, 4, 89-95.
- 92. Westerman, R., & Kuhnt, A. (2021). Metabolic risk factors and fertility disorders: A narrative review of the female perspective. Reproductive Biomedicine & Society Online, 14, 66 74.
- 93. <u>Hanson, B., Johnstone, E., Dorais, J., Silver, B., Peterson, C., & Hotaling, J. (2017). Female infertility, infertility-associated diagnoses, and comorbidities: a review. Journal of Assisted Reproduction and Genetics, 34, 167-177.</u>
- 94. Lu, Y., & Xia, Z. (2023). Diminished ovarian reserve is associated with metabolic disturbances and hyperhomocysteinemia in women with infertility. Journal of Obstetrics and Gynaecology, 43.
- 95. Murugappan, G., Li, S., Lathi, R., Baker, V., & Eisenberg, M. (2019). Risk of cancer in infertile women: analysis of US claims data.. Human reproduction, 34 5, 894-902.
- 96. Lundberg, F., Iliadou, A., Rodriguez-Wallberg, K., Gemzell-Danielsson, K., & Johansson, A. (2019). The risk of breast and gynecological cancer in women with a diagnosis of infertility: a nationwide population-based study. European Journal of Epidemiology, 34, 499 507.
- 97. Farland, L., Lind, K., Thomson, C., Saquib, N., Shadyab, A., Schnatz, P., Robles-Morales, R., Qi, L., Strickler, H., Lane, D., Murugappan, G., Roe, D., & Harris, H. (2024). Infertility and risk of postmenopausal breast cancer in the women's health initiative.. Breast cancer research and treatment.
- 98. Rizzuto, I., Behrens, R., & Smith, L. (2019). Risk of ovarian cancer in women treated with ovarian stimulating drugs for infertility.. The Cochrane database of systematic reviews, 6, CD008215.
- 99. Jiang, Y., Gong, T., Zhang, J., Li, X., Gao, S., Zhao, Y., & Wu, Q. (2020). Infertility and ovarian cancer risk: Evidence from nine prospective cohort studies. International Journal of Cancer, 147, 2121 2130.
- 100. Murugappan, G., Li, S., Alvero, R., Luke, B., & Eisenberg, M. (2021). Association of Infertility and All-Cause Mortality: Analysis of US Claims Data.. American journal of obstetrics and gynecology.

- 101. Stentz, N., Koelper, N., Barnhart, K., Sammel, M., & Senapati, S. (2020). Infertility and Mortality.. American journal of obstetrics and gynecology.
- 102. Wang, Y., Farland, L., Wang, S., Gaskins, A., Wang, L., Rich-Edwards, J., Tamimi, R.,

 Missmer, S., & Chavarro, J. (2021). Association of infertility with premature mortality among

 US women: Prospective cohort study. Lancet Regional Health Americas, 7.

- 103. Zhao, H., Zhang, J., Cheng, X., Nie, X., & He, B. (2023). Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. Journal of Ovarian Research, 16.
- 104. <u>Diamanti-Kandarakis, E., & Dunaif, A. (2012). Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications.. Endocrine reviews, 33 6, 981-1030.</u>
- 105. Rosenfield, R., & Ehrmann, D. (2016). The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited.. Endocrine reviews, 37 5, 467-520.
- 106. Chang, K., Chen, J., & Chen, K. (2024). The Pathophysiological Mechanism and Clinical Treatment of Polycystic Ovary Syndrome: A Molecular and Cellular Review of the Literature.

 International Journal of Molecular Sciences, 25.
- 107. Su, P., Chen, C., & Sun, Y. (2025). Physiopathology of polycystic ovary syndrome in endocrinology, metabolism and inflammation. Journal of Ovarian Research, 18.
- 108. <u>Dabravolski, S., Nikiforov, N., Eid, A., Nedosugova, L., Starodubova, A., Popkova, T., Bezsonov, E., & Orekhov, A. (2021). Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome. International Journal of Molecular Sciences, 22.</u>
- 109. Azziz, R., Carmina, E., Chen, Z., Dunaif, A., Laven, J., Legro, R., Lizneva, D.,

 Natterson-Horowtiz, B., Teede, H., & Yıldız, B. (2016). Polycystic ovary syndrome. Nature

 Reviews Disease Primers, 2.
- 110. Liu, K., He, X., Huang, J., Yu, S., Cui, M., Gao, M., Liu, L., Qian, Y., Xie, Y., Hui, M., Hong, Y., & Nie, X. (2023). Short-chain fatty acid-butyric acid ameliorates granulosa cells inflammation through regulating METTL3-mediated N6-methyladenosine modification of FOSL2 in polycystic ovarian syndrome. Clinical Epigenetics, 15.
- 111. Zhao, X., Jiang, Y., Xi, H., Chen, L., & Feng, X. (2020). Exploration of the Relationship

 Between Gut Microbiota and Polycystic Ovary Syndrome (PCOS): a Review. Geburtshilfe und

 Frauenheilkunde, 80, 161 171.

- 112. Lindheim, L., Bashir, M., Münzker, J., Trummer, C., Zachhuber, V., Leber, B., Horvath, A., Pieber, T., Gorkiewicz, G., Stadlbauer, V., & Obermayer-Pietsch, B. (2017). Alterations in Gut Microbiome Composition and Barrier Function Are Associated with Reproductive and Metabolic Defects in Women with Polycystic Ovary Syndrome (PCOS): A Pilot Study. PLoS ONE, 12.
- 113. Myhrstad, M., Tunsjø, H., Charnock, C., & Telle-Hansen, V. (2020). Dietary Fiber, Gut Microbiota, and Metabolic Regulation—Current Status in Human Randomized Trials.

 Nutrients, 12.
- 114. Guan, Z., Yu, E., & Feng, Q. (2021). Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules, 26.
- 115. So, D., Whelan, K., Rossi, M., Morrison, M., Holtmann, G., Kelly, J., Shanahan, E., Staudacher, H., & Campbell, K. (2018). Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis.. The American journal of clinical nutrition, 107 6, 965-983.
- 116. Whelan, K., Bancil, A., Lindsay, J., & Chassaing, B. (2024). Ultra-processed foods and food additives in gut health and disease.. Nature reviews. Gastroenterology & hepatology.
- 117. Narula, N., Wong, E., Dehghan, M., Mente, A., Rangarajan, S., Lanas, F., López-Jaramillo, P., Rohatgi, P., Lakshmi, P., Varma, R., Orlandini, A., Avezum, Á., Wielgosz, A., Poirier, P., Almadi, M., Altuntas, Y., Ng, K., Chifamba, J., Yeates, K., Puoane, T., Khatib, R., Yusuf, R., Bostrom, K., Zatońska, K., Iqbal, R., Weida, L., Yibing, Z., Sidong, L., Dans, A., Yusufali, A., Mohammadifard, N., Marshall, J., Moayyedi, P., Reinisch, W., & Yusuf, S. (2021). Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. The BMJ, 374.
- 118. Zinöcker, M., & Lindseth, I. (2018). The Western Diet–Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients, 10.
- 119. Dasgupta, A., Bandyopadhyay, G., Ray, I., Bandyopadhyay, K., Chowdhury, N., De, R., & Mahata, S. (2020). Catestatin improves insulin sensitivity by attenuating endoplasmic reticulum stress: In vivo and in silico validation. Computational and Structural Biotechnology Journal, 18, 464 481.

- 120. Blendea, M., Jacobs, D., Stump, C., McFarlane, S., Ogrin, C., Bahtyiar, G., Stas, S., Kumar, P., Sha, Q., Ferrario, C., & Sowers, J. (2005). Abrogation of oxidative stress improves insulin sensitivity in the Ren-2 rat model of tissue angiotensin II overexpression.. American journal of physiology. Endocrinology and metabolism, 288 2, E353-9.
- 121. Rains, J., & Jain, S. (2011). Oxidative stress, insulin signaling, and diabetes.. Free radical biology & medicine, 50 5, 567-75.
- 122. <u>Bird, S., & Hawley, J. (2017). Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exercise Medicine, 2.</u>
- 123. Sjøberg, K., Frøsig, C., Kjøbsted, R., Sylow, L., Kleinert, M., Betik, A., Shaw, C., Kiens, B., Wojtaszewski, J., Rattigan, S., Richter, E., & McConell, G. (2017). Exercise Increases Human Skeletal Muscle Insulin Sensitivity via Coordinated Increases in Microvascular Perfusion and Molecular Signaling. Diabetes, 66, 1501 1510.
- 124. Merz, K., & Thurmond, D. (2020). Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake.. Comprehensive Physiology, 10 3, 785-809.
- 125. Bergman, B., & Goodpaster, B. (2020). Exercise and Muscle Lipid Content, Composition, and Localization: Influence on Muscle Insulin Sensitivity. Diabetes, 69, 848 858.
- 126. Zhou, R., Guo, Q., Xiao, Y., Guo, Q., Huang, Y., Li, C., & Luo, X. (2021). Endocrine role of bone in the regulation of energy metabolism. Bone Research, 9.
- 127. Wang, S., Deng, Z., , Y., Jin, J., Qi, F., Li, S., Liu, C., Lyu, F., & Zheng, Q. (2020). The Role of Autophagy and Mitophagy in Bone Metabolic Disorders. International Journal of Biological Sciences, 16, 2675 2691.
- 128. Pachón-Peña, G., & Bredella, M. (2022). Bone marrow adipose tissue in metabolic health.

 Trends in Endocrinology & Metabolism, 33, 401-408.
- 129. <u>Mizokami, A., Kawakubo-Yasukochi, T., & Hirata, M. (2017). Osteocalcin and its endocrine functions.</u> Biochemical pharmacology, 132, 1-8.
- 130. <u>Cipriani, C., Colangelo, L., Santori, R., Renella, M., Mastrantonio, M., Minisola, S., & Pepe, J. (2020). The Interplay Between Bone and Glucose Metabolism. Frontiers in Endocrinology, 11.</u>

- 131. Kirk, B., Feehan, J., Lombardi, G., & Duque, G. (2020). Muscle, Bone, and Fat Crosstalk: the Biological Role of Myokines, Osteokines, and Adipokines. Current Osteoporosis Reports, 1-13.
- 132. <u>Safari, B., Davaran, S., & Aghanejad, A. (2021). Osteogenic potential of the growth factors and bioactive molecules in bone regeneration.. International journal of biological macromolecules.</u>
- 133. Wojda, S., & Donahue, S. (2018). Parathyroid hormone for bone regeneration. Journal of Orthopaedic Research®. 36.
- 134. Martino, M., Briquez, P., Maruyama, K., & Hubbell, J. (2015). Extracellular matrix-inspired growth factor delivery systems for bone regeneration.. Advanced drug delivery reviews, 94, 41-52.
- 135. Kushioka, J., Chow, S., Toya, M., Tsubosaka, M., Shen, H., Gao, Q., Li, X., Zhang, N., & Goodman, S. (2023). Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy. Inflammation and Regeneration, 43.
- 136. Berga, S., Loucks, T., & Cameron, J. (2001). Endocrine and chronobiological effects of fasting in women.. Fertility and sterility, 75 5, 926-32.
- 137. <u>Solianik, R., Žlibinaitė, L., Drozdova-Statkevičienė, M., & Sujeta, A. (2020).</u>

 <u>Forty-eight-hour fasting declines mental flexibility but improves balance in overweight and obese older women. Physiology & Behavior, 223.</u>
- 138. <u>Dikensoy, E., Balat, O., Cebesoy, B., Ozkur, A., Cicek, H., & Can, G. (2009). The effect of Ramadan fasting on maternal serum lipids, cortisol levels and fetal development. Archives of Gynecology and Obstetrics, 279, 119-123.</u>
- 139. <u>Colombarolli, M., De Oliveira, J., & Cordás, T. (2022). Craving for carbs: food craving and disordered eating in low-carb dieters and its association with intermittent fasting. Eating and Weight Disorders, 27, 3109 3117.</u>
- 140. Wehrens, S., Christou, S., Isherwood, C., Middleton, B., Gibbs, M., Archer, S., Skene, D., & Johnston, J. (2017). Meal Timing Regulates the Human Circadian System. Current Biology, 27, 1768 1775.e3.

- 141. Grosjean, E., Simonneaux, V., & Challet, F. (2023). Reciprocal Interactions between Circadian Clocks, Food Intake, and Energy Metabolism. Biology, 12.
- 142. Zeman, M., Korf, H., Ndez, O., Liu, J., & Nelson, R. (2023). Circadian Rhythms Disrupted by Light at Night and Mistimed Food Intake Alter Hormonal Rhythms and Metabolism.

 International Journal of Molecular Sciences, 24.
- 143. <u>Basolo, A., Genzano, B., Piaggi, P., Krakoff, J., & Santini, F. (2021). Energy Balance and Control of Body Weight: Possible Effects of Meal Timing and Circadian Rhythm Dysregulation.</u>
 Nutrients, 13.
- 144. <u>BaHammam, A., & Pirzada, A. (2023). Timing Matters: The Interplay between Early Mealtime, Circadian Rhythms, Gene Expression, Circadian Hormones, and Metabolism—A Narrative Review. Clocks & Sleep, 5, 507 535.</u>
- 145. <u>Pickel, L., & Sung, H. (2020). Feeding Rhythms and the Circadian Regulation of Metabolism. Frontiers in Nutrition, 7.</u>
- 146. <u>Challet, E. (2019). The circadian regulation of food intake. Nature Reviews Endocrinology,</u> 15, 393-405.
- 147. <u>Shufelt, C., Torbati, T., & Dutra, E. (2017)</u>. <u>Hypothalamic Amenorrhea and the Long-Term</u> <u>Health Consequences. Seminars in Reproductive Medicine, 35, 256 - 262.</u>
- 148. Tegg, N., Myburgh, C., O'Donnell, E., Kennedy, M., & Norris, C. (2024). Impact of Secondary Amenorrhea on Cardiovascular Disease Risk in Physically Active Women: A Systematic Review and Meta-Analysis. Journal of the American Heart Association:

 Cardiovascular and Cerebrovascular Disease, 13.
- 149. Męczekalski, B., Katulski, K., Czyżyk, A., Podfigurna-Stopa, A., & Maciejewska-Jeske, M. (2014). Functional hypothalamic amenorrhea and its influence on women's health. Journal of Endocrinological Investigation, 37, 1049 1056.
- 150. <u>Stárka, Ľ., & Dušková, M. (2015). [Functional hypothalamic amenorrhea].. Vnitrni lekarstvi, 61 10, 882-5 .</u>
- 151. <u>Podfigurna, A., & Męczekalski, B. (2021). Functional Hypothalamic Amenorrhea: A Stress-Based Disease. Endocrines.</u>

- 152. Munro, M., Mast, A., Powers, J., Kouides, P., O'Brien, S., Richards, T., Lavin, M., & Levy, B.
 (2023). The Relationship between Heavy Menstrual Bleeding, Iron Deficiency, and Iron
 Deficiency Anemia.. American journal of obstetrics and gynecology.
- 153. Mansour, D., Hofmann, A., & Gemzell-Danielsson, K. (2020). A Review of Clinical Guidelines on the Management of Iron Deficiency and Iron-Deficiency Anemia in Women with Heavy Menstrual Bleeding. Advances in Therapy, 38, 201 225.
- 154. Bruinvels, G., Burden, R., Brown, N., Richards, T., & Pedlar, C. (2016). The Prevalence and Impact of Heavy Menstrual Bleeding (Menorrhagia) in Elite and Non-Elite Athletes. PLoS ONE, 11.
- 155. , J., Zhan, H., Li, W., Zhang, L., Yun, F., Wu, R., Lin, J., & Li, Y. (2021). Recent trends in therapeutic strategies for repairing endometrial tissue in intrauterine adhesion. Biomaterials Research, 25.
- 156. Rodríguez-Eguren, A., Bueno-Fernandez, C., Gómez-Álvarez, M., Francés-Herrero, E., Pellicer, A., Bellver, J., Seli, E., & Cervelló, I. (2024). Evolution of biotechnological advances and regenerative therapies for endometrial disorders: a systematic review. Human Reproduction Update, 30, 584 613.
- 157. <u>Kou, L., Jiang, X., Xiao, S., Zhao, Y., Yao, Q., & Chen, R. (2019). Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions.. Journal of controlled release: official journal of the Controlled Release Society.</u>
- 158. <u>Evans-Hoeker, E., & Young, S. (2014)</u>. <u>Endometrial Receptivity and Intrauterine Adhesive</u>
 <u>Disease. Seminars in Reproductive Medicine, 32, 392 401</u>.
- 159. Parashar, S., Pajai, S., & Tarang, T. (2023). Recent Advancement in the Management of Intrauterine Adhesions Using Stem Cell Therapy: A Review Article. Cureus, 15.
- 160. Low, M., Speedy, J., Styles, C., De-Regil, L., & Pasricha, S. (2016). Daily iron supplementation for improving anaemia, iron status and health in menstruating women..

 The Cochrane database of systematic reviews, 4, CD009747.
- 161. Munro, M., Mast, A., Powers, J., Kouides, P., O'Brien, S., Richards, T., Lavin, M., & Levy, B.
 (2023). The Relationship between Heavy Menstrual Bleeding, Iron Deficiency, and Iron
 Deficiency Anemia.. American journal of obstetrics and gynecology.

- 162. Mansour, D., Hofmann, A., & Gemzell-Danielsson, K. (2020). A Review of Clinical Guidelines on the Management of Iron Deficiency and Iron-Deficiency Anemia in Women with Heavy Menstrual Bleeding. Advances in Therapy, 38, 201 225.
- 163. <u>Fernández-Gaxiola, A., & De-Regil, L. (2019). Intermittent iron supplementation for reducing anaemia and its associated impairments in adolescent and adult menstruating women. The Cochrane database of systematic reviews, 1, CD009218.</u>
- 164. Percy, L., Mansour, D., & Fraser, I. (2017). Iron deficiency and iron deficiency anaemia in women.. Best practice & research. Clinical obstetrics & gynaecology, 40, 55-67.
- 165. <u>Bulun, S., Yilmaz, B., Sison, C., Miyazaki, K., Bernardi, L., Liu, S., Kohlmeier, A., Yin, P., Milad, M., & Wei, J. (2019). Endometriosis.. Endocrine reviews.</u>
- 166. <u>Jiang, L., Yan, Y., Liu, Z., & Wang, Y. (2016)</u>. <u>Inflammation and endometriosis</u>. <u>Frontiers in bioscience</u>, 21, 941-8.
- 167. <u>Vallvé-Juanico, J., Houshdaran, S., & Giudice, L. (2019). The endometrial immune environment of women with endometriosis.</u> Human reproduction update.
- 168. Zondervan, K., Becker, C., Koga, K., Missmer, S., Taylor, R., & Viganò, P. (2018). Endometriosis. Nature Reviews Disease Primers, 4, 1-25.
- 169. <u>Machairiotis, N., Vasilakaki, S., & Thomakos, N. (2021). Inflammatory Mediators and Pain</u> in Endometriosis: A Systematic Review. Biomedicines, 9.
- 170. Pascoal, E., Wessels, J., Aas-Eng, M., Abrão, M., Condous, G., Jurković, D., Espada, M., Exacoustos, C., Ferrero, S., Guerriero, S., Hudelist, G., Malzoni, M., Reid, S., Tang, S., Tomassetti, C., Singh, S., Van Den Bosch, T., & Leonardi, M. (2022). Strengths and limitations of diagnostic tools for endometriosis and relevance in diagnostic test accuracy research. Ultrasound in Obstetrics & Gynecology, 60.
- 171. <u>Chapron, C., Marcellin, L., Borghese, B., & Santulli, P. (2019). Rethinking mechanisms, diagnosis and management of endometriosis. Nature Reviews Endocrinology, 15, 666 682.</u>
- 172. Agarwal, S., Chapron, C., Giudice, L., Laufer, M., Leyland, N., Missmer, S., Singh, S., & Taylor, H. (2019). Clinical diagnosis of endometriosis: a call to action.. American journal of obstetrics and gynecology, 220 4, 354.e1-354.e12.

- 173. Ferrero, S., Barra, F., & Maggiore, L. (2018). Current and Emerging Therapeutics for the Management of Endometriosis. Drugs, 78, 995-1012.
- 174. <u>Vannuccini, S., Clemenza, S., Rossi, M., & Petraglia, F. (2021). Hormonal treatments for endometriosis: The endocrine background. Reviews in Endocrine & Metabolic Disorders, 23, 333 355.</u>
- 175. Mechsner, S. (2022). Endometriosis, an Ongoing Pain—Step-by-Step Treatment. Journal of Clinical Medicine, 11.
- 176. Rush, G., & Misajon, R. (2018). Examining subjective wellbeing and health-related quality of life in women with endometriosis. Health Care for Women International, 39, 303 321.
- 177. <u>Szypłowska, M., Tarkowski, R., & Kułak, K. (2023). The impact of endometriosis on depressive and anxiety symptoms and quality of life: a systematic review. Frontiers in Public Health, 11.</u>
- 178. Ruszala, M., Dłuski, D., Winkler, I., Kotarski, J., Rechberger, T., & Gogacz, M. (2022). The State of Health and the Quality of Life in Women Suffering from Endometriosis. Journal of Clinical Medicine, 11.
- 179. Lee, H., Lee, J., Ku, S., Kim, S., Kim, J., Moon, S., & Choi, Y. (2013). Natural conception rate following laparoscopic surgery in infertile women with endometriosis. Clinical and Experimental Reproductive Medicine, 40, 29 32.
- 180. Opøien, H., Fedorcsak, P., Omland, A., Åbyholm, T., Bjercke, S., Ertzeid, G., Oldereid, N., Mellembakken, J., & Tanbo, T. (2012). In vitro fertilization is a successful treatment in endometriosis-associated infertility.. Fertility and sterility, 97 4, 912-8.
- 181. Horton, J., Sterrenburg, M., Lane, S., Maheshwari, A., Li, T., & Cheong, Y. (2019).

 Reproductive, obstetric, and perinatal outcomes of women with adenomyosis and endometriosis: a systematic review and meta-analysis.. Human reproduction update.
- 182. Van Gestel, H., Bafort, C., Meuleman, C., Tomassetti, C., & Vanhie, A. (2024). The prevalence of endometriosis in unexplained infertility: a systematic review.. Reproductive biomedicine online, 49 3, 103848.

- 183. Nezhat, C., Khoyloo, F., Tsuei, A., Armani, E., Page, B., Rduch, T., & Nezhat, C. (2024). The Prevalence of Endometriosis in Patients with Unexplained Infertility. Journal of Clinical Medicine, 13.
- 184. <u>Cain, T., Brinsley, J., Bennett, H., Nelson, M., Maher, C., & Singh, B. (2025). Effects of cold-water immersion on health and wellbeing: A systematic review and meta-analysis. PLOS ONE, 20.</u>
- 185. Schwabe, L., & Schächinger, H. (2018). Ten years of research with the Socially Evaluated

 Cold Pressor Test: Data from the past and guidelines for the future.

 Psychoneuroendocrinology, 92, 155-161.
- 186. <u>Tsoutsoubi, L., Ioannou, L., Mantzios, K., Ziaka, S., Nybo, L., & Flouris, A. (2022).</u>
 <u>Cardiovascular Stress and Characteristics of Cold-Induced Vasodilation in Women and Menduring Cold-Water Immersion: A Randomized Control Study. Biology, 11.</u>
- 187. <u>Tikuisis, P., Jacobs, I., Moroz, D., Vallerand, A., & Martineau, L. (2000). Comparison of thermoregulatory responses between men and women immersed in cold water. Journal of applied physiology, 89 4, 1403-11.</u>

- 188. Shah, S., Khalili, H., Gower-Rousseau, C., Olén, O., Benchimol, E., Lynge, E., Nielsen, K., Brassard, P., Vutcovici, M., Bitton, A., Bernstein, C., Leddin, D., Tamim, H., Stefansson, T., Loftus, E., Moum, B., Tang, W., Ng, S., Gearry, R., Sinčić, B., Bell, S., Sands, B., Lakatos, P., Végh, Z., Ott, C., Kaplan, G., Burisch, J., & Colombel, J. (2018). Sex-Based Differences in Incidence of Inflammatory Bowel Diseases-Pooled Analysis of Population-Based Studies From Western Countries.. Gastroenterology, 155 4, 1079-1089.e3.
- 189. <u>Goodman, W., Erkkila, I., & Pizarro, T. (2020). Sex matters: impact on pathogenesis, presentation and treatment of inflammatory bowel disease. Nature Reviews</u>

 Gastroenterology & Hepatology, 1-15.
- 190. <u>Salem, D., El-Ijla, R., AbuMusameh, R., Zakout, K., Halima, A., Abudiab, M., Banat, Y., Alqeeq, B., Al-Tawil, M., & Matar, K. (2024). Sex-related differences in profiles and clinical outcomes of Inflammatory bowel disease: a systematic review and meta-analysis. BMC Gastroenterology, 24.</u>
- 191. Pace, S., Sautebin, L., & Werz, O. (2017). Sex-biased eicosanoid biology: Impact for sex differences in inflammation and consequences for pharmacotherapy.. Biochemical pharmacology, 145, 1-11.
- 192. <u>Casimir, G., Lefèvre, N., Corazza, F., & Duchateau, J. (2013). Sex and inflammation in respiratory diseases: a clinical viewpoint. Biology of Sex Differences, 4, 16 16.</u>
- 193. Gold, S., Willing, A., Leypoldt, F., Paul, F., & Friese, M. (2018). Sex differences in autoimmune disorders of the central nervous system. Seminars in Immunopathology, 41, 177 188.
- 194. Bastianelli, C., Farris, M., Rosato, E., Brosens, I., & Benagiano, G. (2018).

 Pharmacodynamics of combined estrogen-progestin oral contraceptives 3. Inhibition of ovulation. Expert Review of Clinical Pharmacology, 11, 1085 1098.
- 195. <u>Lethaby, A., Wise, M., Weterings, M., Rodriguez, M., & Brown, J. (2019). Combined hormonal contraceptives for heavy menstrual bleeding.</u> The Cochrane database of systematic reviews, 2, CD000154.
- 196. Godin, R., Roy, G., & Douketis, J. (2018). An opinion on the benefits of concomitant oral contraceptive therapy in premenopausal women treated with oral anticoagulants..

 Thrombosis research, 165, 14-17.

- 197. Almalki, H., Alshibani, T., Alhifany, A., & Almohammed, O. (2020). Comparative efficacy of statins, metformin, spironolactone and combined oral contraceptives in reducing testosterone levels in women with polycystic ovary syndrome: a network meta-analysis of randomized clinical trials. BMC Women's Health, 20.
- 198. Forslund, M., Melin, J., Alesi, S., Piltonen, T., Romualdi, D., Tay, C., Witchel, S., Pena, A., Mousa, A., & Teede, H. (2023). Different kinds of oral contraceptive pills in polycystic ovary syndrome: A systematic review and meta-analysis.. European journal of endocrinology.
- 199. Melin, J., Forslund, M., Alesi, S., Piltonen, T., Romualdi, D., Spritzer, P., Tay, C., Pena, A., Witchel, S., Mousa, A., & Teede, H. (2023). Metformin and Combined Oral Contraceptive Pills in the Management of Polycystic Ovary Syndrome: A Systematic Review and Meta-analysis.
 The Journal of Clinical Endocrinology and Metabolism, 109, e817 e836.
- 200. Alpañés, M., Álvarez-Blasco, F., Fernández-Durán, E., Luque-Ramírez, M., & Escobar-Morreale, H. (2017). Combined oral contraceptives plus spironolactone compared with metformin in women with polycystic ovary syndrome: a one-year randomized clinical trial.. European journal of endocrinology, 177 5, 399-408.
- 201. De Medeiros, S. (2017). Risks, benefits size and clinical implications of combined oral contraceptive use in women with polycystic ovary syndrome. Reproductive Biology and Endocrinology: RB&E, 15.
- 202. <u>Sitruk-Ware, R., & Nath, A. (2011). Metabolic effects of contraceptive steroids. Reviews in Endocrine and Metabolic Disorders, 12, 63-75.</u>
- 203. Asi, N., Mohammed, K., Haydour, Q., Gionfriddo, M., Vargas, O., Prokop, L., Faubion, S., & Murad, M. (2016). Progesterone vs. synthetic progestins and the risk of breast cancer: a systematic review and meta-analysis. Systematic Reviews, 5.
- 204. <u>Kutteh, M., Abiad, M., Norman, G., & Kutteh, W. (2019). Comparison of celiac disease</u>
 <u>markers in women with early recurrent pregnancy loss and normal controls. American</u>
 <u>Journal of Reproductive Immunology, 82.</u>
- 205. Tersigni, C., Castellani, R., De Waure, C., Fattorossi, A., De Spirito, M., Gasbarrini, A., Scambia, G., & Di Simone, N. (2014). Celiac disease and reproductive disorders:

 meta-analysis of epidemiologic associations and potential pathogenic mechanisms.. Human reproduction update, 20 4, 582-93.

- 206. Masucci, L., D'Ippolito, S., De Maio, F., Quaranta, G., Mazzarella, R., Bianco, D., Castellani, R., Inversetti, A., Sanguinetti, M., Gasbarrini, A., Scambia, G., & Di Simone, N. (2023). Celiac Disease Predisposition and Genital Tract Microbiota in Women Affected by Recurrent Pregnancy Loss. Nutrients, 15.
- 207. <u>Sarıkaya, E., Tokmak, A., Aksoy, R., Pekcan, M., Alışık, M., & Alkan, A. (2017). The Association Between Serological Markers of Celiac Disease and Idiopathic Recurrent Pregnancy Loss. Fetal and Pediatric Pathology, 36, 373 379.</u>
- 208. France, A., & Penmetsa, A. (2024). A Review of Celiac Disease and Its Implications on Fertility and Pregnancy. Seminars in Reproductive Medicine.
- 209. <u>Crosignani, P. (2008). Intrauterine devices and intrauterine systems.. Human reproduction update, 14 3, 197-208.</u>
- 210. Heinemann, K., Reed, S., Moehner, S., & Minh, T. (2015). Comparative contraceptive effectiveness of levonorgestrel-releasing and copper intrauterine devices: the European Active Surveillance Study for Intrauterine Devices.. Contraception, 91 4, 280-3.
- 211. O'Brien, P., Kulier, R., Helmerhorst, F., Usher-Patel, M., & D'arcangues, C. (2008).

 Copper-containing, framed intrauterine devices for contraception: a systematic review of randomized controlled trials.. Contraception, 77 5, 318-27.
- 212. Goldstuck, N., & Cheung, T. (2019). The efficacy of intrauterine devices for emergency contraception and beyond: a systematic review update. International Journal of Women's Health, 11, 471 479.
- 213. Haverinen, A., Luiro, K., Szanto, T., Kangasniemi, M., Hiltunen, L., Sainio, S., Piltonen, T., Lassila, R., Tapanainen, J., & Heikinheimo, O. (2022). Combined oral contraceptives containing estradiol valerate vs ethinylestradiol on coagulation: A randomized clinical trial.

 Acta Obstetricia et Gynecologica Scandinavica, 101, 1102 1111.
- 214. <u>Kangasniemi, M., Arffman, R., Haverinen, A., Luiro, K., Hustad, S., Heikinheimo, O., Tapanainen, J., & Piltonen, T. (2022). Effects of estradiol- and ethinylestradiol-based contraceptives on adrenal steroids: A randomized trial.. Contraception.</u>

- 215. Kangasniemi, M., Arffman, R., Joenväärä, S., Haverinen, A., Luiro, K., Tohmola, T.,
 Renkonen, R., Heikinheimo, O., Tapanainen, J., & Piltonen, T. (2022). Ethinylestradiol in
 combined hormonal contraceptive has a broader effect on serum proteome compared with
 estradiol valerate: a randomized controlled trial. Human Reproduction (Oxford, England), 38,
 89 102.
- 216. Andozia, M., Vieira, C., Franceschini, S., Tolloi, M., De Sá, M., & Ferriani, R. (2010). Ethinylestradiol and estradiol have different effects on oxidative stress and nitric oxide synthesis in human endothelial cell cultures.. Fertility and sterility, 94 5, 1578-82.
- 217. <u>Mu, Q., Fehring, R., & Bouchard, T. (2020)</u>. <u>Multisite Effectiveness Study of the Marquette Method of Natural Family Planning Program. The Linacre Quarterly, 89, 64 72.</u>
- 218. <u>Fehring, R., Schneider, M., & Barron, M. (2008). EFFICACY OF THE MARQUETTE METHOD</u>

 <u>OF NATURAL FAMILY PLANNING. MCN, The American Journal of Maternal/Child Nursing, 33, 348–354.</u>
- 219. Freundl, G., Sivin, I., & Batár, I. (2010). State-of-the-art of non-hormonal methods of contraception: IV. Natural family planning. The European Journal of Contraception & Reproductive Health Care, 15, 113 123.
- 220. (1981). A prospective multicentre trial of the ovulation method of natural family planning. II. The effectiveness phase.. Fertility and sterility, 36 5, 591-8.
- 221. <u>Genazzani, A., Fidecicchi, T., Arduini, D., Giannini, A., & Simoncini, T. (2023). Hormonal and natural contraceptives: a review on efficacy and risks of different methods for an informed choice. Gynecological Endocrinology, 39.</u>
- 222. Mansour, D., Inki, P., & Gemzell-Danielsson, K. (2010). Efficacy of contraceptive methods:

 A review of the literature. The European Journal of Contraception & Reproductive Health

 Care, 15, 16 4.
- 223. <u>Grandi, G., Del Savio, M., Da Silva-Filho, A., & Facchinetti, F. (2020). Estetrol (E4): the new estrogenic component of combined oral contraceptives. Expert Review of Clinical Pharmacology, 13, 327 330.</u>

- 224. <u>Gérard, C., Arnal, J., Jost, M., Douxfils, J., Lenfant, F., Fontaine, C., Houtman, R., Archer, D., Reid, R., Lobo, R., Gaspard, U., Bennink, H., Creinin, M., & Foidart, J. (2022). Profile of estetrol, a promising native estrogen for oral contraception and the relief of climacteric symptoms of menopause. Expert Review of Clinical Pharmacology, 15, 121 137.</u>
- 225. <u>Fruzzetti, F., Fidecicchi, T., Guevara, M., & Simoncini, T. (2021). Estetrol: A New Choice for Contraception. Journal of Clinical Medicine, 10.</u>
- 226. <u>Gérard, C., & Foidart, J. (2023). Estetrol: From Preclinical to Clinical Pharmacology and Advances in the Understanding of the Molecular Mechanism of Action. Drugs in R&D, 23, 77 92.</u>
- 227. Bennink, H., Verhoeven, C., Zimmerman, Y., Visser, M., Foidart, J., & Gemzell-Danielsson, K. (2016). Clinical effects of the fetal estrogen estetrol in a multiple-rising-dose study in postmenopausal women.. Maturitas, 91, 93-100.
- 228. Sikes-Keilp, C., & Rubinow, D. (2023). GABA-ergic Modulators: New Therapeutic Approaches to Premenstrual Dysphoric Disorder. CNS Drugs, 37, 679-693.
- 229. Kale, M., Wankhede, N., Goyanka, B., Gupta, R., Bishoyi, A., Nathiya, D., Kaur, P., Shanno, K., Taksande, B., Khalid, M., Upaganlawar, A., Umekar, M., Gulati, M., Sachdeva, M., Behl, T., & Gasmi, A. (2024). Unveiling the Neurotransmitter Symphony: Dynamic Shifts in Neurotransmitter Levels during Menstruation.. Reproductive sciences.
- 230. Guevarra, D., Louis, C., Gloe, L., Block, S., Kashy, D., Klump, K., & Moser, J. (2022).
 Examining a window of vulnerability for affective symptoms in the mid-luteal phase of the menstrual cycle. Psychoneuroendocrinology, 147.
- 231. Halbreich, U., Borenstein, J., Pearlstein, T., & Kahn, L. (2003). The prevalence, impairment, impact, and burden of premenstrual dysphoric disorder (PMS/PMDD). Psychoneuroendocrinology, 28, 1-23.
- 232. <u>Dubol, M., Epperson, C., Lanzenberger, R., Sundström-Poromaa, I., Comasco, E., & Comasco, E. (2020). Neuroimaging premenstrual dysphoric disorder: A systematic and critical review. Frontiers in Neuroendocrinology, 57.</u>
- 233. Hantsoo, L., & Epperson, C. (2015). Premenstrual Dysphoric Disorder: Epidemiology and Treatment. Current Psychiatry Reports. 17, 1-9.

234. Carlini, S., Di Scalea, T., McNally, S., Lester, J., & Deligiannidis, K. (2022). Management of Premenstrual Dysphoric Disorder: A Scoping Review. International Journal of Women's Health, 14, 1783 - 1801.

- 235. Kruif, M., Spijker, A., Molendijk, M., & Molendijk, M. (2016). Depression during the perimenopause: A meta-analysis.. Journal of affective disorders, 206, 174-180.
- 236. Maki, P., Kornstein, S., Joffe, H., Bromberger, J., Freeman, E., Athappilly, G., Bobo, W., Rubin, L., Koleva, H., Cohen, L., & Soares, C. (2019). Guidelines for the Evaluation and Treatment of Perimenopausal Depression: Summary and Recommendations.. Journal of women's health, 28 2, 117-134.
- 237. Wang, H., Sun, Y., Wang, W., Wang, X., Zhang, J., Bai, Y., Wang, K., Luan, L., Yan, J., & Qin, L. (2024). Mapping the 5-HTergic neural pathways in perimenopausal mice and elucidating the role of oestrogen receptors in 5-HT neurotransmission. Heliyon, 10.
- 238. Gordon, J., Girdler, S., Meltzer-Brody, S., Stika, C., Thurston, R., Clark, C., Prairie, B., Moses-Kolko, E., Joffe, H., & Wisner, K. (2015). Ovarian hormone fluctuation, neurosteroids, and HPA axis dysregulation in perimenopausal depression: a novel heuristic model.. The American journal of psychiatry, 172 3, 227-36.
- 239. <u>Brinton, R., Yao, J., Yin, F., Mack, W., & Cadenas, E. (2015)</u>. <u>Perimenopause as a neurological transition state</u>. <u>Nature Reviews Endocrinology</u>, 11, 393-405.
- 240. Metcalf, C., Duffy, K., Page, C., & Novick, A. (2023). Cognitive Problems in Perimenopause: A Review of Recent Evidence. Current Psychiatry Reports, 25, 501-511.
- 241. Mckinlay, S., Brambilla, D., & Posner, J. (1992). The normal menopause transition.

 American Journal of Human Biology, 4.
- 242. <u>Cramer, D., Xu, H., & Harlow, B. (1995). Family history as a predictor of early menopause.</u>. Fertility and sterility, 64 4, 740-5.
- 243. Morris, D., Jones, M., Schoemaker, M., Ashworth, A., & Swerdlow, A. (2011). Familial concordance for age at natural menopause: results from the Breakthrough Generations Study. Menopause, 18, 956-961.
- 244. Abildgaard, J., Ploug, T., Al-Saoudi, E., Wagner, T., Thomsen, C., Ewertsen, C., Bzorek, M., Pedersen, B., Pedersen, A., & Lindegaard, B. (2021). Changes in abdominal subcutaneous adipose tissue phenotype following menopause is associated with increased visceral fat mass. Scientific Reports, 11.
- 245. Jeong, H., & Park, H. (2022). Metabolic Disorders in Menopause. Metabolites, 12.

- 246. Ko, S., & Kim, H. (2020). Menopause-Associated Lipid Metabolic Disorders and Foods

 Beneficial for Postmenopausal Women. Nutrients, 12.
- 247. <u>Bird, S., & Hawley, J. (2017). Update on the effects of physical activity on insulin</u> sensitivity in humans. BMJ Open Sport Exercise Medicine, 2.
- 248. <u>Flores-Opazo, M., McGee, S., & Hargreaves, M. (2020). Exercise and GLUT4.. Exercise and sport sciences reviews, 48 3, 110-118.</u>
- 249. Christakis, M., Hasan, H., De Souza, L., & Shirreff, L. (2020). The effect of menopause on metabolic syndrome: cross-sectional results from the Canadian Longitudinal Study on Aging..

 Menopause.
- 250. Pu, D., Tan, R., Yu, Q., & Wu, J. (2017). Metabolic syndrome in menopause and associated factors: a meta-analysis. Climacteric, 20, 583 591.
- 251. Hallajzadeh, J., Khoramdad, M., Izadi, N., Karamzad, N., Almasi-Hashiani, A., Ayubi, E., Qorbani, M., Pakzad, R., Hasanzadeh, A., Sullman, M., & Safiri, S. (2018). Metabolic syndrome and its components in premenopausal and postmenopausal women: a comprehensive systematic review and meta-analysis on observational studies. Menopause, 25, 1155–1164.
- 252. <u>Broekmans, F., Soules, M., & Fauser, B. (2009). Ovarian aging: mechanisms and clinical consequences</u>. Endocrine reviews, 30 5, 465-93.
- 253. Mishra, G., Davies, M., Hillman, S., Chung, H., Roy, S., Maclaran, K., & Hickey, M. (2024).

 Optimising health after early menopause. The Lancet, 403, 958-968.
- 254. Brown, L., Hunter, M., Chen, R., Crandall, C., Gordon, J., Mishra, G., Rother, V., Joffe, H., & Hickey, M. (2024). Promoting good mental health over the menopause transition. The Lancet, 403, 969-983.
- 255. Santoro, N., Roeca, C., Peters, B., & Neal-Perry, G. (2020). The Menopause Transition:

 Signs, Symptoms, and Management Options.. The Journal of clinical endocrinology and metabolism.
- 256. Stone, D., Jones, C., & Mack, K. (2021). Changes in Suicide Rates United States, 2018–2019. Morbidity and Mortality Weekly Report, 70, 261 268.

- 257. Han, B., Kott, P., Hughes, A., Mckeon, R., Blanco, C., & Compton, W. (2016). Estimating the rates of deaths by suicide among adults who attempt suicide in the United States..

 Journal of psychiatric research, 77, 125-33.
- 258. Alsugeir, D., Adesuyan, M., Talaulikar, V., Wei, L., Whittelsea, C., & Brauer, R. (2024).
 Common mental health diagnoses arising from or coinciding with menopausal transition and prescribing of SSRIs/SNRIs medications and other psychotropic medications.. Journal of affective disorders.
- 259. Wu, C., Tseng, P., Wu, M., Li, D., Chen, T., Kuo, F., Stubbs, B., Carvalho, A., Chen, Y., Lin, P., Cheng, Y., & Sun, C. (2020). Antidepressants during and after Menopausal Transition: A Systematic Review and Meta-Analysis. Scientific Reports, 10.
- 260. <u>Herson, M., & Kulkarni, J. (2022)</u>. <u>Hormonal Agents for the Treatment of Depression</u>
 Associated with the Menopause. Drugs & Aging, 39, 607 618.
- 261. <u>Toffol, E., Heikinheimo, O., & Partonen, T. (2015). Hormone therapy and mood in perimenopausal and postmenopausal women: a narrative review. Menopause, 22, 564–578.</u>
- 262. <u>Gava, G., Orsili, I., Alvisi, S., Mancini, I., Seracchioli, R., & Meriggiola, M. (2019).</u>

 <u>Cognition, Mood and Sleep in Menopausal Transition: The Role of Menopause Hormone</u>

 <u>Therapy. Medicina, 55.</u>
- 263. Tseng, P., Chiu, H., Suen, M., Zeng, B., Wu, M., Tu, Y., Hung, K., Wu, Y., Su, K., Li, D., Chen, T., Stubbs, B., Carvalho, A., Solmi, M., Thompson, T., Caruso, M., Matsuoka, Y., Chen, Y., Lin, P., Sun, C., Cheng, Y., & Shiue, Y. (2023). Pharmacological interventions and hormonal therapies for depressive symptoms in peri- and post-menopausal women: a network meta-analysis of randomized controlled trials. Psychiatry Research, 326.
- 264. <u>Kulkarni, J., Gavrilidis, E., Thomas, N., Hudaib, A., Worsley, R., Thew, C., Bleeker, C., & Gurvich, C. (2018)</u>. <u>Tibolone improves depression in women through the menopause transition: A double-blind randomized controlled trial of adjunctive tibolone</u>. <u>Journal of affective disorders, 236, 88-92</u>.
- 265. Magliano, M. (2010). Menopausal arthralgia: Fact or fiction.. Maturitas, 67 1, 29-33.
- 266. Watt, F. (2018). Musculoskeletal pain and menopause. Post Reproductive Health, 24, 34 43.

- 267. Wright, V., Schwartzman, J., Itinoche, R., & Wittstein, J. (2024). The musculoskeletal syndrome of menopause. Climacteric, 27, 466 472.
- 268. <u>Tenan, M., Tenan, M., Tweedell, A., Tweedell, A., Hackney, A., & Griffin, L. (2014).</u>
 <u>Changes in resting heart rate variability across the menstrual cycle.</u> Psychophysiology, 51 10, 996-1004.
- 269. <u>Saperova, E., & Filippova, I. (2022). Heart rate variability during different phases of menstrual cycle. The FASEB Journal, 36.</u>
- 270. Brar, T., Singh, K., & Kumar, A. (2015). Effect of Different Phases of Menstrual Cycle on
 Heart Rate Variability (HRV).. Journal of clinical and diagnostic research: JCDR, 9 10, CC01-4.
- 271. Shi, L., Chen, S., , M., Bao, Y., Han, Y., Wang, Y., Shi, J., Vitiello, M., & Lu, L. (2017). Sleep disturbances increase the risk of dementia: A systematic review and meta-analysis.. Sleep medicine reviews, 40, 4-16.
- 272. <u>Irwin, M., & Vitiello, M. (2019). Implications of sleep disturbance and inflammation for Alzheimer's disease dementia. The Lancet Neurology, 18, 296-306.</u>
- 273. <u>Bubu, O., Brannick, M., Mortimer, J., Umasabor-Bubu, O., Sebastião, Y., Wen, Y., Schwartz, S., Borenstein, A., Wu, Y., Morgan, D., & Anderson, W. (2017). Sleep, Cognitive impairment, and Alzheimer's disease: A Systematic Review and Meta-Analysis. SLEEP, 40, &NA;.</u>

- 274. Aimagambetova, G., Issanov, A., Terzic, S., Bapayeva, G., Ukybassova, T., Baikoshkarova, S., Aldiyarova, A., Shauyen, F., & Terzic, M. (2020). The effect of psychological distress on IVF outcomes: Reality or speculations?. PLoS ONE, 15.
- 275. Moustakli, E., Stavros, S., Katopodis, P., Skentou, C., Potiris, A., Panagopoulos, P., Domali, E., Arkoulis, I., Karampitsakos, T., Sarafi, E., Michaelidis, T., Zachariou, A., & Zikopoulos, A. (2025). Oxidative Stress and the NLRP3 Inflammasome: Focus on Female Fertility and Reproductive Health. Cells, 14.
- 276. Zanettoullis, A., Mastorakos, G., Vakas, P., Vlahos, N., & Valsamakis, G. (2024). Effect of Stress on Each of the Stages of the IVF Procedure: A Systematic Review. International Journal of Molecular Sciences, 25.
- 277. Ebbesen, S., Zachariae, R., Mehlsen, M., Thomsen, D., Højgaard, A., Ottosen, L., Petersen, T., & Ingerslev, H. (2009). Stressful life events are associated with a poor in-vitro fertilization (IVF) outcome: a prospective study.. Human reproduction, 24 9, 2173-82.
- 278. Schliep, K., Hinkle, S., Kim, K., Sjaarda, L., Silver, R., Stanford, J., Purdue-Smithe, A.,

 Plowden, T., Schisterman, E., & Mumford, S. (2022). Prospectively assessed perceived stress
 associated with early pregnancy losses among women with history of pregnancy loss..

 Human reproduction.
- 279. Zejnullahu, V., Zejnullahu, V., & Kosumi, E. (2021). The role of oxidative stress in patients with recurrent pregnancy loss: a review. Reproductive Health, 18.
- 280. Kolte, A., Olsen, L., Mikkelsen, E., Christiansen, O., & Nielsen, H. (2015). Depression and emotional stress is highly prevalent among women with recurrent pregnancy loss.. Human reproduction, 30 4, 777-82.

- 281. Park, C., Oh, J., Feng, J., Cho, Y., Oiao, H., & Ko, C. (2022). Lifetime changes of the oocyte pool: Contributing factors with a focus on ovulatory inflammation. Clinical and Experimental Reproductive Medicine, 49, 16 25.
- 282. Vollenhoven, B., & Hunt, S. (2018). Ovarian ageing and the impact on female fertility. F1000Research, 7.
- 283. Moghadam, A., Moghadam, M., Hemadi, M., & Saki, G. (2021). Oocyte quality and aging.

 JBRA Assisted Reproduction, 26, 105 122.
- 284. Telfer, E., Grosbois, J., Odey, Y., Rosario, R., & Anderson, R. (2023). Making a good egg: human oocyte health, aging, and in vitro development. Physiological Reviews, 103, 2623 2677.
- 285. Zhu, Q., Li, Y., , J., , H., & Liang, X. (2023). Potential factors result in diminished ovarian reserve: a comprehensive review. Journal of Ovarian Research, 16.
- 286. Zhu, Q., , H., Wang, J., & Liang, X. (2024). Understanding the Mechanisms of Diminished

 Ovarian Reserve: Insights from Genetic Variants and Regulatory Factors.. Reproductive

 sciences.
- 287. Lim, J., Lee, H., Nguyen, J., Shin, J., Getze, S., Quach, C., Squire, E., Jung, K., Mahler, S., Mackie, K., Piomelli, D., & Luderer, U. (2023). Adolescent exposure to low-dose
 Δ9-tetrahydrocannabinol (THC) depletes the ovarian reserve in female mice.. Toxicological sciences: an official journal of the Society of Toxicology.
- 288. Wesselink, A., Rothman, K., Hatch, E., Mikkelsen, E., S&;rensen, H., & Wise, L. (2017). Age and fecundability in a North American preconception cohort study. American Journal of Obstetrics and Gynecology, 217, 667.e1–667.e8.
- 289. <u>Dunson, D., Colombo, B., & Baird, D. (2002). Changes with age in the level and duration of fertility in the menstrual cycle.</u> Human reproduction, 17 5, 1399-403.
- 290. Konishi, S., Kariya, F., Hamasaki, K., Takayasu, L., & Ohtsuki, H. (2021). Fecundability and Sterility by Age: Estimates Using Time to Pregnancy Data of Japanese Couples Trying to Conceive Their First Child with and without Fertility Treatment. International Journal of Environmental Research and Public Health, 18.

- 291. Plessis, S., Agarwal, A., & Syriac, A. (2015). Marijuana, phytocannabinoids, the endocannabinoid system, and male fertility. Journal of Assisted Reproduction and Genetics, 32, 1575-1588.
- 292. Payne, K., Mazur, D., Hotaling, J., & Pastuszak, A. (2019). Cannabis and Male Fertility: A Systematic Review. Journal of Urology.
- 293. Harlow, A., Wesselink, A., Hatch, E., Rothman, K., & Wise, L. (2020). Male Preconception Marijuana Use and Spontaneous Abortion: A Prospective Cohort Study. Epidemiology.
- 294. Nassan, F., Arvizu, M., Mínguez-Alarcón, L., Gaskins, A., Williams, P., Petrozza, J., Hauser, R., & Chavarro, J. (2019). Marijuana smoking and outcomes of infertility treatment with assisted reproductive technologies.. Human reproduction, 34 9, 1818-1829.
- 295. <u>Lo, J., Hedges, J., & Girardi, G. (2022). Impact of cannabinoids on pregnancy, reproductive health and offspring outcomes.</u> American journal of obstetrics and gynecology.
- 296. <u>Iyer, T., & Manson, J. (2024). Recent Trends in Menopausal Hormone Therapy Use in the US: Insights, Disparities, and Implications for Practice.. JAMA health forum, 5 9, e243135 .</u>
- 297. Zhang, G., Chen, J., Luo, Y., Mathur, M., Anagnostis, P., Nurmatov, U., Talibov, M., Zhang, J., Hawrylowicz, C., Lumsden, M., Critchley, H., Sheikh, A., Lundbäck, B., Lässer, C., Kankaanranta, H., Lee, S., & Nwaru, B. (2021). Menopausal hormone therapy and women's health: An umbrella review. PLoS Medicine, 18.
- 298. <u>Biehl, C., Plotsker, O., & Mirkin, S. (2019)</u>. A systematic review of the efficacy and safety of vaginal estrogen products for the treatment of genitourinary syndrome of menopause. <u>Menopause</u>, 26, 431–453.
- 299. Chen, Y., Su, T., & Lau, H. (2020). Estrogen for the prevention of recurrent urinary tract infections in postmenopausal women: a meta-analysis of randomized controlled trials.

 International Urogynecology Journal, 32, 17-25.
- 300. Ferrante, K., Wasenda, E., Jung, C., Adams-Piper, E., & Lukacz, E. (2019). Vaginal Estrogen for the Prevention of Recurrent Urinary Tract Infection in Postmenopausal Women: A Randomized Clinical Trial.. Female Pelvic Medicine & Reconstructive Surgery.

- 301. Yu, X., He, L., Wang, Y., Wang, L., Yang, Z., & Lin, Y. (2022). Local Estrogen Therapy for Pelvic Organ Prolapse in Postmenopausal Women: A Systematic Review and Meta-Analysis.

 Iranian Journal of Public Health, 51, 1728 1740.
- 302. Weber, M., Kleijn, M., Langendam, M., Limpens, J., Heineman, M., & Roovers, J. (2015).

 Local Oestrogen for Pelvic Floor Disorders: A Systematic Review. PLoS ONE, 10.
- 303. Rahn, D., Richter, H., Sung, V., & Pruszynski, J. (2024). Three-Year Outcomes of a Randomized Clinical Trial of Perioperative Vaginal Estrogen as Adjunct to Native Tissue Vaginal Apical Prolapse Repair.. American journal of obstetrics and gynecology.
- 304. Bodner-Adler, B., Alarab, M., Ruiz-Zapata, A., & Latthe, P. (2019). Effectiveness of hormones in postmenopausal pelvic floor dysfunction—International Urogynecological Association research and development—committee opinion. International Urogynecology Journal, 31, 1577 1582.
- 305. Am, E. (2017). Genitourinary syndrome of menopause.. Australian family physician, 46 7, 481-484.
- Mili, N., Paschou, S., Armeni, A., Georgopoulos, N., Goulis, D., & Lambrinoudaki, I.
 (2021). Genitourinary syndrome of menopause: a systematic review on prevalence and treatment. Menopause, 28, 706 716.
- 307. Phillips, N., & Bachmann, G. (2021). The genitourinary syndrome of menopause.

 Menopause, 28, 579 588.
- 308. Labrie, F., Archer, D., Koltun, W., Vachon, A., Young, D., Frenette, L., Portman, D., Montesino, M., Côté, I., Parent, J., Lavoie, L., Beauregard, A., Martel, C., Vaillancourt, M., Balser, J., & Moyneur, É. (2016). Efficacy of intravaginal dehydroepiandrosterone (DHEA) on moderate to severe dyspareunia and vaginal dryness, symptoms of vulvovaginal atrophy, and of the genitourinary syndrome of menopause. Menopause, 23, 243–256.
- 309. <u>Kagan, R., Kellogg-Spadt, S., & Parish, S. (2019)</u>. <u>Practical Treatment Considerations in the Management of Genitourinary Syndrome of Menopause</u>. <u>Drugs & Aging, 36, 897 908</u>.
- 310. Santen, R., Mirkin, S., Bernick, B., & Constantine, G. (2019). Systemic estradiol levels with low-dose vaginal estrogens. Menopause (New York, N.y.), 27, 361 370.

- 311. Santen, R. (2015). Vaginal administration of estradiol: effects of dose, preparation and timing on plasma estradiol levels. Climacteric, 18, 121 134.
- 312. Simon, J., Archer, D., Constantine, G., Pickar, J., Amadio, J., Bernick, B., Graham, S., & Mirkin, S. (2017). A vaginal estradiol softgel capsule, TX-004HR, has negligible to very low systemic absorption of estradiol: Efficacy and pharmacokinetic data review.. Maturitas, 99, 51-58.